Two-Step Spin Crossover and Contact-Tunable Giant Magnetoresistance in Cyclopentadienyl Metalloporphyrin
Abstract
1. Introduction
2. Model and Method
3. Results and Discussion
3.1. Geometric Structures
3.2. Spin Crossover
3.3. Transmission Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104. [Google Scholar] [CrossRef]
- Jasper-Toennies, T.; Gruber, M.; Karan, S.; Jacob, H.; Tuczek, F.; Berndt, R. Robust and selective switching of an FeIII spin-crossover compound on Cu2N/Cu(100) with memristance behavior. Nano Lett. 2017, 17, 6613–6619. [Google Scholar] [CrossRef]
- Bajaj, A.; Khurana, R.; Ali, M.-E. Quantum interference and spin filtering effects in photo-responsive single molecule devices. J. Mater. Chem. C 2021, 9, 11242–11251. [Google Scholar] [CrossRef]
- Wu, D.; Cao, X.-H.; Chen, S.-Z.; Tang, L.-M.; Feng, Y.-X.; Chen, K.-Q.; Zhou, W.-X. Pure spin current generated in thermally driven molecular magnetic junctions: A promising mechanism for thermoelectric conversion. J. Mater. Chem. A 2019, 7, 19037–19044. [Google Scholar] [CrossRef]
- Li, D.; Frauenheim, T.; He, J. Robust Giant magnetoresistance in 2D Van der Waals molecular magnetic tunnel junctions. ACS Appl. Mater. Interfaces 2021, 13, 36098–36105. [Google Scholar] [CrossRef]
- Linares, J.; Codjovi, E.; Garcia, Y. Pressure and temperature spin crossover sensors with optical detection. Sensors 2012, 12, 4479–4492. [Google Scholar] [CrossRef]
- Molnár, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin crossover nanomaterials: From fundamental concepts to devices. Adv. Mater. 2018, 30, 1703862. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef]
- Liu, J.; Luo, K.; Chang, H.; Sun, B.; Zhang, S.; Wu, Z. Tunable giant magnetoresistance ratio in bilayer CuPc molecular devices. RSC Adv. 2022, 12, 3386–3393. [Google Scholar] [CrossRef]
- Li, D.; Smogunov, A. Giant magnetoresistance due to orbital-symmetry mismatch in transition metal benzene sandwich molecules. Phys. Rev. B 2021, 103, 085432. [Google Scholar] [CrossRef]
- Noori, M.; Sadeghi, H.; Al-Galiby, Q.; Bailey, S.W.D.; Lambert, C.J. High cross-plane thermoelectric performance of metallo-porphyrin molecular junctions. Phys. Chem. Chem. Phys. 2017, 19, 17356–17359. [Google Scholar] [CrossRef]
- Zwick, P.; Dulić, D.; van der Zant, H.S.J.; Mayor, M. Porphyrins as building blocks for single-molecule devices. Nanoscale 2021, 13, 15500–15525. [Google Scholar] [CrossRef]
- Seng, J.-W.; Tong, L.; Peng, X.-Q.; Chang, W.-Y.; Xie, W.; Wang, Y.-H.; Zheng, J.-F.; Shao, Y.; Chen, J.-Z.; Jin, S.; et al. Influence of a coordinated metal center on charge transport through a series of porphyrin molecular junctions. J. Phys. Chem. C 2022, 126, 1168–1175. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.; Zhu, C.; Zong, Y.; Cao, H. STM studies on porphyrins and phthalocyanines at the liquid/solid interface for molecular-scale electronics. Dalton Trans. 2023, 52, 11017. [Google Scholar] [CrossRef]
- Kingsbury, C.J.; Senge, M.O. The shape of porphyrins. Coord. Chem. Rev. 2021, 431, 213760. [Google Scholar] [CrossRef]
- Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [Google Scholar] [CrossRef]
- Kuang, G.; Zhang, Q.; Lin, T.; Pang, R.; Shi, X.; Xu, H.; Lin, N. Mechanically-controlled reversible spin crossover of single Fe-porphyrin molecules. ACS Nano 2017, 11, 5–6300. [Google Scholar] [CrossRef]
- Heitmann, G.; Schütt, C.; Herges, R. Spin state switching in solution with an azoimidazole-functionalized Nickel(II)-Porphyrin. Eur. J. Org. Chem. 2016, 22, 7–3823. [Google Scholar] [CrossRef]
- Wäckerlin, C.; Tarafder, K.; Girovsky, J.; Nowakowski, J.; Hählen, T.; Shchyrba, A.; Siewert, D.; Kleibert, A.; Nolting, F.; Oppeneer, P.M.; et al. Ammonia coordination introducing a magnetic moment in an on-surface low-spin porphyrin. Angew. Chem. Int. Ed. 2013, 52, 4568–4571. [Google Scholar] [CrossRef]
- Wäckerlin, C.; Tarafder, K.; Siewert, D.; Girovsky, J.; Hählen, T.; Iacovita, C.; Kleibert, A.; Nolting, F.; Jung, T.A.; Oppeneer, P.M.; et al. On-surface coordination chemistry of planar molecular spin systems: Novel magnetochemical effects induced by axial ligands. Chem. Sci. 2012, 3, 3154–3160. [Google Scholar] [CrossRef]
- Sahoo, D.; Roy, S.; Khan, F.S.T.; Singh, A.K.; Rath, S.P. Stabilizing intermediate-spin state in iron(III) porphyrins. Polyhedron 2019, 172, 8–14. [Google Scholar] [CrossRef]
- Ide, Y.; Murai, N.; Ishimae, H.; Suzuki, M.; Mori, S.; Takahashi, M.; Nakamura, M.; Yoshinod, K.; Ikeue, T. Spin-crossover between high-spin (S = 5/2) and low-spin (S = 1/2) states in six-coordinate iron(III) porphyrin complexes having two pyridine-N oxide derivatives. Dalton Trans. 2017, 46, 242–249. [Google Scholar] [CrossRef]
- Algethami, N.; Sadeghi, H.; Sangtarash, S.; Lambert, C.J. The conductance of porphyrin-based molecular nanowires increases with length. Nano Lett. 2018, 18, 4482–4486. [Google Scholar] [CrossRef] [PubMed]
- Long, M.-Q.; Chen, K.-Q.; Wang, L.; Qing, W.; Zou, B.S.; Shuai, Z. Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett. 2008, 92, 243303. [Google Scholar] [CrossRef]
- Cheng, J.-F.; Zhou, L.; Wen, Z.; Yan, Q.; Han, Q.; Gao, L. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: The effect of functional groups. J. Phys. Condens. Matter 2017, 29, 175201. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, S.-Z.; Zeng, Y.-J.; Wu, D.; Li, B.-L.; Feng, Y.-X.; Fan, Z.-Q.; Tang, L.-M.; Chen, K.-Q. Switchable spin filters in magnetic molecular junctions based on quantum interference. Adv. Electron. Mater. 2020, 6, 2000689. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G.; Zhang, D. Modification of side chains of conjugated molecules and polymers for charge mobility enhancement and sensing functionality. Acc. Chem. Res. 2018, 51, 1422–1432. [Google Scholar] [CrossRef]
- Kang, Q.; Ye, L.; Xu, B.; An, C.; Stuard, S.J.; Zhang, S.; Yao, H.; Ade, H.; Hou, J. A Printable Organic Cathode Interlayer Enables over 13% Efficiency for 1-cm2 Organic Solar Cells. Joule 2019, 3, 227–239. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, Y.-F.; Wen, J.; Ma, H.-B.; Wang, F.-B.; Xia, X.-H. Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci. Bull. 2019, 64, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Shiragami, T.; Matsumoto, J.; Inoue, H.; Yasuda, M. Antimony porphyrin complexes as visible-light driven photocatalyst. J. Photochem. Photobiol. C 2005, 6, 227–248. [Google Scholar] [CrossRef]
- Arnold, J.; Hoffman, C.G. Novel synthetic route to scandium porphyrin derivatives and the first structurally characterized metalloporphyrin-η5-cyclopentadienyl sandwich compound. J. Am. Chem. Soc. 1990, 112, 8620–8621. [Google Scholar]
- Kim, H.-J.; Jung, S.; Jeon, Y.-M.; Whang, D.; Kim, K. Novel low-valent zirconium porphyrin complexes: Syntheses, characterization and X-ray crystal structures of (η5-cyclopentadienyl) zirconium tetraphenylporphyrin and (η2-diphenylacetylene)zirconium octaethylporphyrin. Chem. Commun. 1997, 22, 2201–2202. [Google Scholar]
- Buckley, H.L.; Chomitz, W.A.; Koszarna, B.; Tasior, M.; Gryko, D.T.; Brothers, P.J.; Arnold, J. Synthesis of lithium corrole and its use as a reagent for the preparation of cyclopentadienyl zirconium and titanium corrole complexes. Chem. Commun. 2012, 48, 10766–10768. [Google Scholar] [CrossRef]
- Platel, R.H.; Tasso, T.T.; Zhou, W.; Furuyama, T.; Kobayashi, N.; Leznof, D.B. Metallophthalocyanin-ocenes: Scandium phthalocyanines with an η5-bound Cp ring. Chem. Commun. 2015, 51, 5986–5989. [Google Scholar]
- Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407. [Google Scholar] [CrossRef]
- Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401. [Google Scholar] [CrossRef]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ventra, M.D. Electrical Transport in Nanoscale Systems; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Xue, Y.; Datta, S.; Ratner, M.A. First-principles based matrix Green’s function approach to molecular electronic devices: General formalism. Chem. Phys. 2002, 281, 151–170. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215. [Google Scholar] [CrossRef]
- Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 1986, 57, 1761–1764. [Google Scholar] [CrossRef]
- Shen, L.; Yang, S.-W.; Ng, M.-F.; Ligatchev, V.; Zhou, L.; Feng, Y. Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. J. Am. Chem. Soc. 2008, 130, 13956–13960. [Google Scholar] [CrossRef]
- Sarmah, A.; Hobza, P. Mechanical force-induced manipulation of electronic conductance in a spin-crossover complex: A simple approach to molecular electronics. Nanoscale Adv. 2020, 2, 2907–2913. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zhou, L.; Cheng, J.-F.; Li, S.-J.; You, W.-L.; Wang, X. Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules. J. Phys. Condens. Matter 2018, 30, 105301. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, S.-W.; Ng, M.-F.; Sullivan, M.B.; Tan, V.B.C.; Shen, L. One-dimensional iron-cyclopentadienyl sandwich molecular wire with half metallic, negative differential resistance and high-spin filter efficiency properties. J. Am. Chem. Soc. 2008, 130, 4023–4027. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, G.; Li, J.; Wu, J.; Gu, B.-L.; Duan, W. Ab initio study of half-metallicity and magnetism of complex organometallic molecular wires. J. Phys. Chem. C 2011, 115, 7292–7297. [Google Scholar] [CrossRef]
- Yang, J.-F.; Zhou, L.; Han, Q.; Wang, X.-F. Bias-controlled giant magnetoresistance through cyclopentadienyl−iron multidecker molecules. J. Phys. Chem. C 2012, 116, 19996–20001. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Martín-Rodríguez, A.; Aravena, D.; di Palma, G.; Qian, W.; Puigmartí-Luis, J.; Aliaga-Alcalde, N.; González-Campo, A.; Díez-Pérez, I.; Ruiz, E. Room-Temperature spin-dependent transport in metalloporphyrin-based supramolecular wires. Angew. Chem. Int. Ed. 2021, 60, 25958–25965. [Google Scholar] [CrossRef]
Element | Spin State | Relative Energy (eV) | (μB) | Sandwich (Y/N) | (Å) | (Å) |
---|---|---|---|---|---|---|
Sc | singlet | 0 | 0.00 | Y | 2.217 | 0.830 |
triplet | 1.81 | 0.01 | Y | 2.215 | 0.814 | |
Ti | doublet | 0 | 1.01 | Y | 2.097 | 0.782 |
quartet | 1.85 | 1.03 | Y | 2.096 | 0.773 | |
V | singlet | 0.82 | 0.00 | Y | 1.955 | 0.757 |
triplet | 0 | 2.05 | Y | 2.062 | 0.767 | |
quintet | 1.82 | 2.07 | Y | 2.063 | 0.759 | |
Cr | doublet | 0.86 | 1.00 | Y | 1.938 | 0.757 |
quartet | 0 | 3.22 | N | 2.972 | 0.291 | |
sextet | 0.65 | 3.92 | N | 3.713 | 0.048 | |
Mn | singlet | 1.16 | 0.00 | Y | 1.912 | 0.758 |
triplet | 0.15 | 2.25 | N | 2.960 | 0.270 | |
quintet | 0 | 3.72 | N | 2.703 | 0.370 | |
Fe | doublet | 0.43 | 2.07 | N | 3.383 | 0.078 |
quartet | 0.15 | 2.40 | N | 3.090 | 0.225 | |
sextet | 0 | 4.07 | Y | 2.202 | 0.676 | |
Co | singlet | 0 | 0.00 | N | 2.963 | 0.176 |
quartet | 0.24 | 1.09 | N | 3.383 | 0.066 | |
quintet | 0.54 | 2.75 | N | 3.690 | 0.065 |
PScCp (Singlet) | PTiCp (Doublet) | PVCp (Triplet) | PFeCp (Sextet) | ||
---|---|---|---|---|---|
monoatomic | 27.05 | 52.85 | 58.5 | 54.94 | |
2 | 2.16 | 6.14 | 35.31 | 0.7 | |
3.5 | 17.08 | 39.29 | 82.53 | 33.15 | |
4.5 | 6.18 | 16 | 15.83 | 65.72 | |
monoatomic | 1.69 | 1.79 | 5.1 | 0.15 | |
2 | 0 | 0 | 0 | 0 | |
3.5 | 18.16 | 47.06 | 77.39 | 21.48 | |
4.5 | 4.64 | 11.49 | 15.98 | 52 | |
MR | monoatomic | 88.2% | 93.4% | 84% | 99.5% |
2 | 100% | 100% | 100% | 100% | |
3.5 | −3% | −9% | 3.2% | 21.4% | |
4.5 | 14.3% | 16.4% | 0.5% | 11.7% | |
SFE(P) | monoatomic | 100% | 100% | 100% | 100% |
2 | 100% | 100% | 100% | 100% | |
3.5 | 0.9% | 32.8% | 50.6% | 100% | |
4.5 | 70% | 35.9% | 55.5% | 14.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Zhou, L.; You, W.-L.; Wang, X. Two-Step Spin Crossover and Contact-Tunable Giant Magnetoresistance in Cyclopentadienyl Metalloporphyrin. Appl. Sci. 2024, 14, 3696. https://doi.org/10.3390/app14093696
Yu M, Zhou L, You W-L, Wang X. Two-Step Spin Crossover and Contact-Tunable Giant Magnetoresistance in Cyclopentadienyl Metalloporphyrin. Applied Sciences. 2024; 14(9):3696. https://doi.org/10.3390/app14093696
Chicago/Turabian StyleYu, Mingbo, Liping Zhou, Wen-Long You, and Xuefeng Wang. 2024. "Two-Step Spin Crossover and Contact-Tunable Giant Magnetoresistance in Cyclopentadienyl Metalloporphyrin" Applied Sciences 14, no. 9: 3696. https://doi.org/10.3390/app14093696
APA StyleYu, M., Zhou, L., You, W.-L., & Wang, X. (2024). Two-Step Spin Crossover and Contact-Tunable Giant Magnetoresistance in Cyclopentadienyl Metalloporphyrin. Applied Sciences, 14(9), 3696. https://doi.org/10.3390/app14093696