Effect of Simultaneous Lower- and Upper-Body Ischemic Preconditioning on Lactate, Heart Rate, and Rowing Performance in Healthy Males and Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to a Problem
2.2. Subjects
2.3. Experimental Session
2.3.1. Heart Rate Measurement
2.3.2. Blood Lactate Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Practical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHAM | sham condition |
IPC | ischemia preconditioning condition |
RPP | relative peak power output |
MPP | relative mean power output |
TPP | time to peak power |
BLa | blood lactate |
HRWP | heart rate after warm-up |
HRMEAN | mean heart rate recorded during 500 m rowing |
HRMAX | maximum heart rate recorded during 500 m rowing |
M | males |
F | females |
References
- Murry, C.E.; Richard, V.J.; Reimer, K.A.; Jennings, R.B. Ischemic Preconditioning Slows Energy Metabolism and Delays Ultrastructural Damage during a Sustained Ischemic Episode. Circ. Res. 1990, 66, 913–931. [Google Scholar] [CrossRef]
- Andreas, M.; Schmid, A.I.; Keilani, M.; Doberer, D.; Bartko, J.; Crevenna, R.; Moser, E.; Wolzt, M. Effect of Ischemic Preconditioning in Skeletal Muscle Measured by Functional Magnetic Resonance Imaging and Spectroscopy: A Randomized Crossover Trial. J. Cardiovasc. Magn. Reson. 2011, 13, 32. [Google Scholar] [CrossRef]
- Cunniffe, B.; Sharma, V.; Cardinale, M.; Yellon, D. Characterization of Muscle Oxygenation Response to Vascular Occlusion: Implications for Remote Ischaemic Preconditioning and Physical Performance. Clin. Physiol. Funct. Imaging 2017, 37, 785–793. [Google Scholar] [CrossRef]
- Cruz, R.S.D.O.; De Aguiar, R.A.; Turnes, T.; Pereira, K.L.; Caputo, F. Effects of Ischemic Preconditioning on Maximal Constant-Load Cycling Performance. J. Appl. Physiol. 2015, 119, 961–967. [Google Scholar] [CrossRef]
- Volga Fernandes, R.; Tricoli, V.; Garcia Soares, A.; Haruka Miyabara, E.; Saldanha Aoki, M.; Laurentino, G. Low-Load Resistance Exercise with Blood Flow Restriction Increases Hypoxia-Induced Angiogenic Genes Expression. J. Hum. Kinet. 2022, 84, 82–91. [Google Scholar] [CrossRef]
- O’Brien, L.; Jacobs, I. Potential Physiological Responses Contributing to the Ergogenic Effects of Acute Ischemic Preconditioning during Exercise: A Narrative Review. Front. Physiol. 2022, 13, 1051529. [Google Scholar] [CrossRef]
- Salagas, A.; Tsoukos, A.; Terzis, G.; Paschalis, V.; Katsikas, C.; Krzysztofik, M.; Wilk, M.; Zajac, A.; Bogdanis, G.C. Effectiveness of Either Short-Duration Ischemic Pre-Conditioning, Single-Set High-Resistance Exercise, or Their Combination in Potentiating Bench Press Exercise Performance. Front. Physiol. 2022, 13, 1083299. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.-M.; Ji, S.; Dong, D. Effect of Resistance Training with Blood Flow Restriction on the Explosive Power of Lower Limbs: A Systematic Review and Meta-Analysis. J. Hum. Kinet. 2023, 89, 259. [Google Scholar] [CrossRef]
- Turnes, T.; De Aguiar, R.A.; De Oliveira Cruz, R.S.; Salvador, A.F.; Lisbôa, F.D.; Pereira, K.L.; Raimundo, J.A.G.; Caputo, F. Impact of Ischaemia–Reperfusion Cycles during Ischaemic Preconditioning on 2000-m Rowing Ergometer Performance. Eur. J. Appl. Physiol. 2018, 118, 1599–1607. [Google Scholar] [CrossRef]
- Simoneau, J.A.; Bouchard, C. Human Variation in Skeletal Muscle Fiber-Type Proportion and Enzyme Activities. Am. J. Physiol.-Endocrinol. Metab. 1989, 257, E567–E572. [Google Scholar] [CrossRef]
- Staron, R.S.; Hagerman, F.C.; Hikida, R.S.; Murray, T.F.; Hostler, D.P.; Crill, M.T.; Ragg, K.E.; Toma, K. Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women. J. Histochem. Cytochem. 2000, 48, 623–629. [Google Scholar] [CrossRef]
- Kent-Braun, J.A.; Ng, A.V.; Doyle, J.W.; Towse, T.F. Human Skeletal Muscle Responses Vary with Age and Gender during Fatigue Due to Incremental Isometric Exercise. J. Appl. Physiol. 2002, 93, 1813–1823. [Google Scholar] [CrossRef]
- Paradis-Deschênes, P.; Joanisse, D.R.; Billaut, F. Sex-Specific Impact of Ischemic Preconditioning on Tissue Oxygenation and Maximal Concentric Force. Front. Physiol. 2017, 7, 233289. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Gangat, A.; Bommarito, J.C.; Burr, J.F.; Millar, P.J. Ischemic Preconditioning Acutely Improves Functional Sympatholysis during Handgrip Exercise in Healthy Males but Not Females. Med. Sci. Sports Exerc. 2023, 55, 1250–1257. [Google Scholar] [CrossRef]
- Bailey, T.G.; Jones, H.; Gregson, W.; Atkinson, G.; Cable, N.T.; Thijssen, D.H.J. Effect of Ischemic Preconditioning on Lactate Accumulation and Running Performance. Med. Sci. Sports Exerc. 2012, 44, 2084–2089. [Google Scholar] [CrossRef]
- Bellini, D.; Chapman, C.; Peden, D.; Hoekstra, S.P.; Ferguson, R.A.; Leicht, C.A. Ischaemic Preconditioning Improves Upper-Body Endurance Performance without Altering VO2 Kinetics. Eur. J. Sport Sci. 2022, 23, 1538–1546. [Google Scholar] [CrossRef]
- Kjeld, T.; Rasmussen, M.R.; Jattu, T.; Nielsen, H.B.; Secher, N.H. Ischemic Preconditioning of One Forearm Enhances Static and Dynamic Apnea. Med. Sci. Sports Exerc. 2014, 46, 151–155. [Google Scholar] [CrossRef]
- Mäestu, J.; Jürimäe, J.; Jürimäe, T. Monitoring of Performance and Training in Rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef]
- Tanner, R.K.; Fuller, K.L.; Ross, M.L.R. Evaluation of Three Portable Blood Lactate Analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur. J. Appl. Physiol. 2010, 109, 551–559. [Google Scholar] [CrossRef]
- Green, H.J.; Fraser, I.G.; Ranney, D.A. Male and Female Differences in Enzyme Activities of Energy Metabolism in Vastus Lateralis Muscle. J. Neurol. Sci. 1984, 65, 323–331. [Google Scholar] [CrossRef]
- Maher, A.C.; Akhtar, M.; Vockley, J.; Tarnopolsky, M.A. Women Have Higher Protein Content of β-Oxidation Enzymes in Skeletal Muscle than Men. PLoS ONE 2010, 5, e12025. [Google Scholar] [CrossRef]
- Hunter, S.K. The Relevance of Sex Differences in Performance Fatigability. Med. Sci. Sports Exerc. 2016, 48, 2247–2256. [Google Scholar] [CrossRef]
- Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition. Physiology 2015, 30, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Gibson, N.; Mahony, B.; Tracey, C.; Fawkner, S.; Murray, A. Effect of Ischemic Preconditioning on Repeated Sprint Ability in Team Sport Athletes. J. Sports Sci. 2015, 33, 1182–1188. [Google Scholar] [CrossRef]
- Griffin, P.J.; Ferguson, R.A.; Gissane, C.; Bailey, S.J.; Patterson, S.D. Ischemic Preconditioning Enhances Critical Power during a 3 Minute All-out Cycling Test. J. Sports Sci. 2018, 36, 1038–1043. [Google Scholar] [CrossRef]
- Mota, G.R.; Rightmire, Z.B.; Martin, J.S.; McDonald, J.R.; Kavazis, A.N.; Pascoe, D.D.; Gladden, L.B. Ischemic Preconditioning Has No Effect on Maximal Arm Cycling Exercise in Women. Eur. J. Appl. Physiol. 2020, 120, 369–380. [Google Scholar] [CrossRef]
- Ferreira, T.N.; Sabino-Carvalho, J.L.C.; Lopes, T.R.; Ribeiro, I.C.; Succi, J.E.; Da Silva, A.C.; Silva, B.M. Ischemic Preconditioning and Repeated Sprint Swimming: A Placebo and Nocebo Study. Med. Sci. Sports Exerc. 2016, 48, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Kraus, A.S.; Pasha, E.P.; Machin, D.R.; Alkatan, M.; Kloner, R.A.; Tanaka, H. Bilateral Upper Limb Remote Ischemic Preconditioning Improves Anaerobic Power. Open Sports Med. J. 2015, 9, 1–6. [Google Scholar] [CrossRef]
- Wüst, R.C.I.; Morse, C.I.; De Haan, A.; Jones, D.A.; Degens, H. Sex Differences in Contractile Properties and Fatigue Resistance of Human Skeletal Muscle: Sex Differences in Fatigue and Contractile Properties. Exp. Physiol. 2008, 93, 843–850. [Google Scholar] [CrossRef]
- Paull, E.J.; Van Guilder, G.P. Remote Ischemic Preconditioning Increases Accumulated Oxygen Deficit in Middle-Distance Runners. J. Appl. Physiol. 2019, 126, 1193–1203. [Google Scholar] [CrossRef]
- Yehualashet, A.S.; Belachew, T.F.; Kifle, Z.D.; Abebe, A.M. Targeting Cardiac Metabolic Pathways: A Role in Ischemic Management. Vasc. Health Risk Manag. 2020, 16, 353–365. [Google Scholar] [CrossRef] [PubMed]
M (95%CI) | F (95%CI) | |
---|---|---|
Blood Lactate Concentration [mmol/L] | ||
SHAM | 19.4 ± 2.7 | 15.7 ± 4.2 |
(18.3 to 20.6) | (13.7 to 17.7) | |
IPC | 19.5 ± 1.9 | 14.7 ± 3.3 |
(18.6 to 20.3) | (13.1 to 16.3) | |
d | 0.04 | 0.26 |
Relative Peak Power Output [W/kg] | ||
SHAM | 6.5 ± 1.4 | 3.8 ± 1.1 |
(6.0 to 7.1) | (3.3 to 4.3) | |
IPC | 6.8 ± 1.1 | 3.8 ± 1 |
(6.3 to 7.2) | (3.4 to 4.3) | |
d | 0.16 | 0 |
Relative Mean Power Output [W/kg] | ||
SHAM | 5.3 ± 0.8 | 2.8 ± 0.7 |
(4.9 to 5.6) | (2.5 to 3.2) | |
IPC | 5.3 ± 0.9 | 3.0 ± 0.7 |
(4.9 to 5.7) | (2.6 to 3.3) | |
d | 0 | 0.29 |
Time to Peak Power Output [s] (Median; IQR) | ||
SHAM | 23.9 ± 25.3 | 25.3 ± 27.8 |
(13.2 to 34.6; [12.4; 16]) | (13.2 to 34.6; [16; 15]) | |
IPC | 17.3 ± 24.6 | 11.2 ± 29.7 * |
(6.9 to 27.7; [9.9; 20.8]) | (−3.1 to 25.5; [1; 1.5]) | |
d | 0.26 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbański, R.; Aschenbrenner, P.; Żmijewski, P.; Ewertowska, P.; Świtała, K.; Krzysztofik, M. Effect of Simultaneous Lower- and Upper-Body Ischemic Preconditioning on Lactate, Heart Rate, and Rowing Performance in Healthy Males and Females. Appl. Sci. 2024, 14, 3539. https://doi.org/10.3390/app14093539
Urbański R, Aschenbrenner P, Żmijewski P, Ewertowska P, Świtała K, Krzysztofik M. Effect of Simultaneous Lower- and Upper-Body Ischemic Preconditioning on Lactate, Heart Rate, and Rowing Performance in Healthy Males and Females. Applied Sciences. 2024; 14(9):3539. https://doi.org/10.3390/app14093539
Chicago/Turabian StyleUrbański, Robert, Piotr Aschenbrenner, Piotr Żmijewski, Paulina Ewertowska, Katarzyna Świtała, and Michał Krzysztofik. 2024. "Effect of Simultaneous Lower- and Upper-Body Ischemic Preconditioning on Lactate, Heart Rate, and Rowing Performance in Healthy Males and Females" Applied Sciences 14, no. 9: 3539. https://doi.org/10.3390/app14093539
APA StyleUrbański, R., Aschenbrenner, P., Żmijewski, P., Ewertowska, P., Świtała, K., & Krzysztofik, M. (2024). Effect of Simultaneous Lower- and Upper-Body Ischemic Preconditioning on Lactate, Heart Rate, and Rowing Performance in Healthy Males and Females. Applied Sciences, 14(9), 3539. https://doi.org/10.3390/app14093539