Notes on Bus User Assignment Problem Using Section Network Representation Method
Abstract
1. Introduction
2. Background
3. Problem Formulation
3.1. Supply Model
3.2. Demand Model
3.3. Network Loading Assumptions
4. Transit Network Representation
4.1. The CLP
4.2. Section-Based Augmented Graph
5. Transit Assignment Algorithm
Algorithm 1 Transit Assignment Equilibrium Algorithm. |
Pre-condition : connected Post-condition : set of link flows (F)
|
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
i, j | Generic nodes in V |
o | Origin node |
Destination node | |
m | Bus line index |
s | Start bus stop |
r | End bus stop |
R | Path R is composed of a set of k paths |
h | Reference time |
Distribution share | |
The number of transit trips from o to d | |
Demand pair index | |
k | Elementary path index |
The total production of user class u | |
The total attraction of user class u | |
eij | edge of an ordered pair of indexes (i, j) |
Path flow | |
Line m frequency | |
The competing flow of other sections that contain common lines of section | |
Incident symbol that equals 1 if path k traverses i, 0 otherwise | |
The conditional probability of choosing k | |
cij | Aggregate impedance on link eij |
The average cost of | |
Non-additive path R cost | |
vm | Line m vehicle capacity, including the loading factor |
lcm | Line m nominal capacity |
Waiting time at node i | |
Link flow | |
Graph of V and E | |
Incident symbol that equals 1 if is part of k, 0 otherwise | |
Path choice proportion for | |
TS | Transfer number |
IT | In-vehicle time |
£ | Weight factor |
Calibrated factors | |
G | Path cost set |
C | Link cost set |
F | Link flow set |
H | Path flow set |
W | Node pair set |
LC | Bus line capacity set |
Φ | Bus line frequency set |
L | Set of lines that defines the transit system |
E | Set of edges |
V | Set of vertices (nodes) |
BNDP | Bus network design problem |
CLP | Common lines problem |
FB | Frequency-based |
FIFO | First In–First Out |
O/D | Origin–Destination |
MNL | Multinomial logit |
MSA | Method of successive averages |
IIA | Independence of Irrelevant Alternatives |
IT | In-vehicle time |
References
- Cea, J.D.; Fernandez, E. Transit assignment for congested public transport system: An equilibrium model. Transp. Sci. 1993, 27, 133–147. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S. Frequency based transit assignment models: Graph formulation study. IEEE Access 2022, 10, 62991–63003. [Google Scholar] [CrossRef]
- Owais, M.; Osman, M.K. Complete hierarchical multi-objective genetic algorithm for transit network design problem. Expert Syst. Appl. 2018, 114, 143–154. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. Integrating underground line design with existing public transportation systems to increase transit network connectivity: Case study in greater cairo. Expert Syst. Appl. 2021, 167, 114183. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Shan, L. A Continuous Equilibrium Network Design Model and Algorithm for Transit Systems. Transp. Res. Part B Methodol. 2004, 38, 235–250. [Google Scholar] [CrossRef]
- Chriqui, C.; Robillard, P. Common Bus Lines. Transp. Sci. 1975, 9, 115–121. [Google Scholar] [CrossRef]
- Owais, M. Deep Learning for Integrated Origin–Destination Estimation and Traffic Sensor Location Problems. IEEE Trans. Intell. Transp. Syst. 2024, in press. [Google Scholar] [CrossRef]
- Sadrani, M.; Tirachini, A.; Antoniou, C. Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches. Eur. J. Oper. Res. 2022, 299, 263–282. [Google Scholar] [CrossRef]
- Owais, M.; Alshehri, A.; Gyani, J.; Aljarbou, M.H.; Alsulamy, S. Prioritizing Rear-End Crash Explanatory Factors for Injury Severity Level Using Deep Learning and Global Sensitivity Analysis. Expert Syst. Appl. 2024, 245, 123114. [Google Scholar] [CrossRef]
- Almutairi, A.; Yi, P.; Owsais, M. New Approach for Estimating Intersection Control Delay from Passive Traffic Sensors at Network Level. IEEE Access 2024, 12, 2882–2900. [Google Scholar] [CrossRef]
- Marguier, P.; Ceder, A. Passenger Waiting Strategies for Overlapping Bus Routes. Transp. Sci. 1984, 18, 207–230. [Google Scholar] [CrossRef]
- Spiess, H.; Florian, M. Optimal strategies: A new assignment model for transit networks. Transp. Res. Part B Methodol. 1989, 23, 83–102. [Google Scholar] [CrossRef]
- Spiess, H. On Optimal Route Choice Strategies in Transit Networks; Centre de Recherche sur les Transports, Université de Montréal: Montreal, QC, Canada, 1983. [Google Scholar]
- Nguyen, S.; Pallottino, S. Equilibrium traffic assignment for large scale transit networks. Eur. J. Oper. Res. 1988, 37, 176–186. [Google Scholar] [CrossRef]
- Bellman, R. On a routing problem. Q. Appl. Math. 1958, 16, 87–90. [Google Scholar] [CrossRef]
- Li, Q.; Chen, P.W.; Nie, Y.M. Finding optimal hyperpaths in large transit networks with realistic headway distributions. Eur. J. Oper. Res. 2015, 240, 98–108. [Google Scholar] [CrossRef]
- De Bona, A.; Rosa, M.; Fonseca, K.; Lüders, R.; Kozievitch, N. Congestion Potential–A New Way to Analyze Public Transportation based on Complex Networks. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8. [Google Scholar]
- Larrain, H.; Suman, H.K.; Muñoz, J.C. Route based equilibrium assignment in congested transit networks. Transp. Res. Part C Emerg. Technol. 2021, 127, 103125. [Google Scholar] [CrossRef]
- Sun, S.; Szeto, W. Logit-based transit assignment: Approach-based formulation and paradox revisit. Transp. Res. Part B Methodol. 2018, 112, 191–215. [Google Scholar] [CrossRef]
- Lam, W.H.-K.; Gao, Z.; Chan, K.; Yang, H. A stochastic user equilibrium assignment model for congested transit networks. Transp. Res. Part B Methodol. 1999, 33, 351–368. [Google Scholar] [CrossRef]
- Nielsen, O.A. A stochastic transit assignment model considering differences in passengers utility functions. Transp. Res. Part B Methodol. 2000, 34, 377–402. [Google Scholar] [CrossRef]
- Bouzaïene-Ayari, B.; Gendreau, M.; Nguyen, S. Modeling bus stops in transit networks: A survey and new formulations. Transp. Sci. 2001, 35, 304–321. [Google Scholar] [CrossRef]
- Cominetti, R.; Correa, J. Common-lines and passenger assignment in congested transit networks. Transp. Sci. 2001, 35, 250–267. [Google Scholar] [CrossRef]
- Spiess, H. Technical note—Conical volume-delay functions. Transp. Sci. 1990, 24, 153–158. [Google Scholar] [CrossRef]
- Cepeda, M.; Cominetti, R.; Florian, M. A frequency-based assignment model for congested transit networks with strict capacity constraints: Characterization and computation of equilibria. Transp. Res. Part B Methodol. 2006, 40, 437–459. [Google Scholar] [CrossRef]
- Kurauchi, F.; Bell, M.G.; Schmöcker, J.-D. Capacity constrained transit assignment with common lines. J. Math. Model. Algorithms 2003, 2, 309–327. [Google Scholar] [CrossRef]
- Schmöcker, J.-D.; Fonzone, A.; Shimamoto, H.; Kurauchi, F.; Bell, M.G. Frequency-based transit assignment considering seat capacities. Transp. Res. Part B Methodol. 2011, 45, 392–408. [Google Scholar] [CrossRef]
- Trozzi, V.; Gentile, G.; Bell, M.G.; Kaparias, I. Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths. Transp. Res. Part B Methodol. 2013, 57, 266–285. [Google Scholar] [CrossRef]
- Gentile, G.; Meschini, L.; Papola, N. Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks. Transp. Res. Part B Methodol. 2007, 41, 1114–1138. [Google Scholar] [CrossRef]
- Cheung, L.L.; Shalaby, A.S. System optimal re-routing transit assignment heuristic: A theoretical framework and large-scale case study. Int. J. Transp. Sci. Technol. 2017, 6, 287–300. [Google Scholar] [CrossRef]
- Oliker, N.; Bekhor, S. A frequency based transit assignment model that considers online information. Transp. Res. Part C Emerg. Technol. 2018, 88, 17–30. [Google Scholar] [CrossRef]
- Oliker, N.; Bekhor, S. A frequency based transit assignment model that considers online information and strict capacity constraints. EURO J. Transp. Logist. 2020, 9, 100005. [Google Scholar] [CrossRef]
- Baaj, M.H.; Mahmassani, H. An AI-Based Approach for Transit Route System Planning and Design. J. Adv. Transp. 1991, 25, 187–210. [Google Scholar] [CrossRef]
- Shih, M.-C.; Mahmassani, H. A Design Methodology for Bus Transit Networks with Coordinated Operation. Ph.D. Thesis, Center for Transportation, Bureau of Engineering Research, University of Texas: Austin, TX, USA, 1994. [Google Scholar]
- Baaj, M.H.; Mahmassani, H. Hybrid Route Generation Heuristic Algorithm for the Design of Transit Networks. Transp. Res. Part C Emerg. Technol. 1995, 3, 31–50. [Google Scholar] [CrossRef]
- Tom, V.; Mohan, S. Transit route network design using frequency coded genetic algorithm. J. Transp. Eng. 2003, 129, 186–195. [Google Scholar] [CrossRef]
- Szeto, W.Y.; Wu, Y. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong. Eur. J. Oper. Res. 2011, 209, 141–155. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Zhang, L.; Hua, W.; Li, K. A Pareto Artificial Fish Swarm Algorithm for Solving a Multi-Objective Electric Transit Network Design Problem. Transp. A Transp. Sci. 2020, 16, 1648–1670. [Google Scholar] [CrossRef]
- Du, M.; Cun, D.; Chen, A.; Tan, H. A Weibit-Based sequential transit assignment model based on hyperpath graph and generalized extreme value network representation. Transp. Res. Part C Emerg. Technol. 2023, 151, 104142. [Google Scholar] [CrossRef]
- Ngamchai, S.; Lovell, D.J. Optimal time transfer in bus transit route network design using a genetic algorithm. J. Transp. Eng. 2003, 129, 510–521. [Google Scholar] [CrossRef]
- Agrawal, J.; Mathew, T.V. Transit route network design using parallel genetic algorithm. J. Comput. Civ. Eng. 2004, 18, 248–256. [Google Scholar] [CrossRef]
- Fan, L.; Mumford, C.L. A metaheuristic approach to the urban transit routing problem. J. Heuristics 2010, 16, 353–372. [Google Scholar] [CrossRef]
- Gutiérrez-Jarpa, G.; Laporte, G.; Marianov, V.; Moccia, L. Multi-objective rapid transit network design with modal competition: The case of Concepción, Chile. Comput. Oper. Res. 2017, 78, 27–43. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Kepaptsoglou, K. Integrated transit route network design and infrastructure planning for on-line electric vehicles. Transp. Res. Part D Transp. Environ. 2019, 77, 178–197. [Google Scholar] [CrossRef]
- Ahmed, L.; Mumford, C.; Kheiri, A. Solving urban transit route design problem using selection hyper-heuristics. Eur. J. Oper. Res. 2019, 274, 545–559. [Google Scholar] [CrossRef]
- Fan, W.; Machemehl, R.B. Tabu search strategies for the public transportation network optimizations with variable transit demand. Comput. Aided Civ. Infrastruct. Eng. 2008, 23, 502–520. [Google Scholar] [CrossRef]
- Nikolić, M.; Teodorović, D. Transit network design by bee colony optimization. Expert Syst. Appl. 2013, 40, 5945–5955. [Google Scholar] [CrossRef]
- Kechagiopoulos, P.N.; Beligiannis, G.N. Solving the urban transit routing problem using a particle swarm optimization based algorithm. Appl. Soft Comput. 2014, 21, 654–676. [Google Scholar] [CrossRef]
- Nayeem, M.A.; Rahman, M.K.; Rahman, M.S. Transit network design by genetic algorithm with elitism. Transp. Res. Part C Emerg. Technol. 2014, 46, 30–45. [Google Scholar] [CrossRef]
- Islam, K.A.; Moosa, I.M.; Mobin, J.; Nayeem, M.A.; Rahman, M.S. A heuristic aided Stochastic Beam Search algorithm for solving the transit network design problem. Swarm Evol. Comput. 2019, 46, 154–170. [Google Scholar] [CrossRef]
- Cervantes-Sanmiguel, K.I.; Chavez-Hernandez, M.V.; Ibarra-Rojas, O.J. Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design. Transp. Res. Part B Methodol. 2023, 173, 142–161. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. An optimal metro design for transit networks in existing square cities based on non-demand criterion. Sustainability 2020, 12, 9566. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. Design scheme of multiple-subway lines for minimizing passengers transfers in mega-cities transit networks. Int. J. Rail Transp. 2021, 9, 540–563. [Google Scholar] [CrossRef]
- Arbex, R.O.; da Cunha, C.B. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp. Res. Part B Methodol. 2015, 81, 355–376. [Google Scholar] [CrossRef]
- Zhao, F.; Ubaka, I. Transit network optimization-minimizing transfers and optimizing route directness. J. Public Transp. 2004, 7, 4. [Google Scholar] [CrossRef]
- Mauttonw, A.; Urquhart, M. A route set construction algorithm for the transit network design problem. Comput. Oper. Res. 2009, 36, 2440–2449. [Google Scholar] [CrossRef]
- Zhao, F.; Ubaka, I.; Gan, A. Transit network optimization: Minimizing transfers and maximizing service coverage with an integrated simulated annealing and tabu search method. Transp. Res. Rec. 2005, 1923, 180–188. [Google Scholar] [CrossRef]
- Marín, Á. An extension to rapid transit network design problem. Top 2007, 15, 231–241. [Google Scholar] [CrossRef]
- Guan, J.; Yang, H.; Wirasinghe, S.C. Simultaneous optimization of transit line configuration and passenger line assignment. Transp. Res. Part B Methodol. 2006, 40, 885–902. [Google Scholar] [CrossRef]
- Goerigk, M.; Schmidt, M. Line planning with user-optimal route choice. Eur. J. Oper. Res. 2017, 259, 424–436. [Google Scholar] [CrossRef]
- Bagloee, S.A.; Ceder, A.A. Transit-network design methodology for actual-size road networks. Transp. Res. Part B Methodol. 2011, 45, 1787–1804. [Google Scholar] [CrossRef]
- Owais, M.; Moussa, G.; Abbas, Y.; El-Shabrawy, M. Simple and effective solution methodology for transit network design problem. Int. J. Comput. Appl. 2014, 89, 32–40. [Google Scholar] [CrossRef]
- Ul Abedin, Z. A Methodology to Design Multimodal Public Transit Networks: Procedures and Applications; Nanyang Technological University: Singapore, 2019. [Google Scholar]
- Krylatov, A.; Zakharov, V.; Tuovinen, T.; Krylatov, A.; Zakharov, V.; Tuovinen, T. Principles of wardrop for traffic assignment in a road network. In Optimization Models and Methods for Equilibrium Traffic Assignment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–43. [Google Scholar]
- Idriss, L.K.; Owais, M. Global sensitivity analysis for seismic performance of shear wall with high-strength steel bars and recycled aggregate concrete. Constr. Build. Mater. 2024, 411, 134498. [Google Scholar] [CrossRef]
- Sheffi, Y.; Powell, W. A comparison of stochastic and deterministic traffic assignment over congested networks. Transp. Res. Part B Methodol. 1981, 15, 53–64. [Google Scholar] [CrossRef]
- Sheffi, Y.; Powell, W.B. An algorithm for the equilibrium assignment problem with random link times. Networks 1982, 12, 191–207. [Google Scholar] [CrossRef]
- Nielsen, O.A.; Frederiksen, R.D. Optimisation of timetable-based, stochastic transit assignment models based on MSA. Ann. Oper. Res. 2006, 144, 263–285. [Google Scholar] [CrossRef]
- Di Gangi, M.; Cantarella, G.; Vitetta, A. MSA Algorithms for solving SUE in Urban Transit Networks. In Proceedings of the 4th hEART Conference, Lyngby, Denmark, 15–18 August 2011. [Google Scholar]
- Sheffi, Y. Urban Transportation Networks; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985; Volume 6. [Google Scholar]
- Ren, H.; Song, Y.; Long, J.; Si, B. A new transit assignment model based on line and node strategies. Transp. Res. Part B Methodol. 2021, 150, 121–142. [Google Scholar] [CrossRef]
- Stern, R. Passenger Transfer System Review; Transportation Research Board: Washington, DC, USA, 1996; Volume 19. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.; Owais, M.; Ahmed, A.S. Notes on Bus User Assignment Problem Using Section Network Representation Method. Appl. Sci. 2024, 14, 3406. https://doi.org/10.3390/app14083406
Almutairi A, Owais M, Ahmed AS. Notes on Bus User Assignment Problem Using Section Network Representation Method. Applied Sciences. 2024; 14(8):3406. https://doi.org/10.3390/app14083406
Chicago/Turabian StyleAlmutairi, Ahmed, Mahmoud Owais, and Abdou S. Ahmed. 2024. "Notes on Bus User Assignment Problem Using Section Network Representation Method" Applied Sciences 14, no. 8: 3406. https://doi.org/10.3390/app14083406
APA StyleAlmutairi, A., Owais, M., & Ahmed, A. S. (2024). Notes on Bus User Assignment Problem Using Section Network Representation Method. Applied Sciences, 14(8), 3406. https://doi.org/10.3390/app14083406