Notes on Bus User Assignment Problem Using Section Network Representation Method
Abstract
:1. Introduction
2. Background
3. Problem Formulation
3.1. Supply Model
3.2. Demand Model
3.3. Network Loading Assumptions
4. Transit Network Representation
4.1. The CLP
4.2. Section-Based Augmented Graph
5. Transit Assignment Algorithm
Algorithm 1 Transit Assignment Equilibrium Algorithm. |
Pre-condition : connected Post-condition : set of link flows (F)
|
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
i, j | Generic nodes in V |
o | Origin node |
Destination node | |
m | Bus line index |
s | Start bus stop |
r | End bus stop |
R | Path R is composed of a set of k paths |
h | Reference time |
Distribution share | |
The number of transit trips from o to d | |
Demand pair index | |
k | Elementary path index |
The total production of user class u | |
The total attraction of user class u | |
eij | edge of an ordered pair of indexes (i, j) |
Path flow | |
Line m frequency | |
The competing flow of other sections that contain common lines of section | |
Incident symbol that equals 1 if path k traverses i, 0 otherwise | |
The conditional probability of choosing k | |
cij | Aggregate impedance on link eij |
The average cost of | |
Non-additive path R cost | |
vm | Line m vehicle capacity, including the loading factor |
lcm | Line m nominal capacity |
Waiting time at node i | |
Link flow | |
Graph of V and E | |
Incident symbol that equals 1 if is part of k, 0 otherwise | |
Path choice proportion for | |
TS | Transfer number |
IT | In-vehicle time |
£ | Weight factor |
Calibrated factors | |
G | Path cost set |
C | Link cost set |
F | Link flow set |
H | Path flow set |
W | Node pair set |
LC | Bus line capacity set |
Φ | Bus line frequency set |
L | Set of lines that defines the transit system |
E | Set of edges |
V | Set of vertices (nodes) |
BNDP | Bus network design problem |
CLP | Common lines problem |
FB | Frequency-based |
FIFO | First In–First Out |
O/D | Origin–Destination |
MNL | Multinomial logit |
MSA | Method of successive averages |
IIA | Independence of Irrelevant Alternatives |
IT | In-vehicle time |
References
- Cea, J.D.; Fernandez, E. Transit assignment for congested public transport system: An equilibrium model. Transp. Sci. 1993, 27, 133–147. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S. Frequency based transit assignment models: Graph formulation study. IEEE Access 2022, 10, 62991–63003. [Google Scholar] [CrossRef]
- Owais, M.; Osman, M.K. Complete hierarchical multi-objective genetic algorithm for transit network design problem. Expert Syst. Appl. 2018, 114, 143–154. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. Integrating underground line design with existing public transportation systems to increase transit network connectivity: Case study in greater cairo. Expert Syst. Appl. 2021, 167, 114183. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Shan, L. A Continuous Equilibrium Network Design Model and Algorithm for Transit Systems. Transp. Res. Part B Methodol. 2004, 38, 235–250. [Google Scholar] [CrossRef]
- Chriqui, C.; Robillard, P. Common Bus Lines. Transp. Sci. 1975, 9, 115–121. [Google Scholar] [CrossRef]
- Owais, M. Deep Learning for Integrated Origin–Destination Estimation and Traffic Sensor Location Problems. IEEE Trans. Intell. Transp. Syst. 2024, in press. [Google Scholar] [CrossRef]
- Sadrani, M.; Tirachini, A.; Antoniou, C. Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches. Eur. J. Oper. Res. 2022, 299, 263–282. [Google Scholar] [CrossRef]
- Owais, M.; Alshehri, A.; Gyani, J.; Aljarbou, M.H.; Alsulamy, S. Prioritizing Rear-End Crash Explanatory Factors for Injury Severity Level Using Deep Learning and Global Sensitivity Analysis. Expert Syst. Appl. 2024, 245, 123114. [Google Scholar] [CrossRef]
- Almutairi, A.; Yi, P.; Owsais, M. New Approach for Estimating Intersection Control Delay from Passive Traffic Sensors at Network Level. IEEE Access 2024, 12, 2882–2900. [Google Scholar] [CrossRef]
- Marguier, P.; Ceder, A. Passenger Waiting Strategies for Overlapping Bus Routes. Transp. Sci. 1984, 18, 207–230. [Google Scholar] [CrossRef]
- Spiess, H.; Florian, M. Optimal strategies: A new assignment model for transit networks. Transp. Res. Part B Methodol. 1989, 23, 83–102. [Google Scholar] [CrossRef]
- Spiess, H. On Optimal Route Choice Strategies in Transit Networks; Centre de Recherche sur les Transports, Université de Montréal: Montreal, QC, Canada, 1983. [Google Scholar]
- Nguyen, S.; Pallottino, S. Equilibrium traffic assignment for large scale transit networks. Eur. J. Oper. Res. 1988, 37, 176–186. [Google Scholar] [CrossRef]
- Bellman, R. On a routing problem. Q. Appl. Math. 1958, 16, 87–90. [Google Scholar] [CrossRef]
- Li, Q.; Chen, P.W.; Nie, Y.M. Finding optimal hyperpaths in large transit networks with realistic headway distributions. Eur. J. Oper. Res. 2015, 240, 98–108. [Google Scholar] [CrossRef]
- De Bona, A.; Rosa, M.; Fonseca, K.; Lüders, R.; Kozievitch, N. Congestion Potential–A New Way to Analyze Public Transportation based on Complex Networks. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8. [Google Scholar]
- Larrain, H.; Suman, H.K.; Muñoz, J.C. Route based equilibrium assignment in congested transit networks. Transp. Res. Part C Emerg. Technol. 2021, 127, 103125. [Google Scholar] [CrossRef]
- Sun, S.; Szeto, W. Logit-based transit assignment: Approach-based formulation and paradox revisit. Transp. Res. Part B Methodol. 2018, 112, 191–215. [Google Scholar] [CrossRef]
- Lam, W.H.-K.; Gao, Z.; Chan, K.; Yang, H. A stochastic user equilibrium assignment model for congested transit networks. Transp. Res. Part B Methodol. 1999, 33, 351–368. [Google Scholar] [CrossRef]
- Nielsen, O.A. A stochastic transit assignment model considering differences in passengers utility functions. Transp. Res. Part B Methodol. 2000, 34, 377–402. [Google Scholar] [CrossRef]
- Bouzaïene-Ayari, B.; Gendreau, M.; Nguyen, S. Modeling bus stops in transit networks: A survey and new formulations. Transp. Sci. 2001, 35, 304–321. [Google Scholar] [CrossRef]
- Cominetti, R.; Correa, J. Common-lines and passenger assignment in congested transit networks. Transp. Sci. 2001, 35, 250–267. [Google Scholar] [CrossRef]
- Spiess, H. Technical note—Conical volume-delay functions. Transp. Sci. 1990, 24, 153–158. [Google Scholar] [CrossRef]
- Cepeda, M.; Cominetti, R.; Florian, M. A frequency-based assignment model for congested transit networks with strict capacity constraints: Characterization and computation of equilibria. Transp. Res. Part B Methodol. 2006, 40, 437–459. [Google Scholar] [CrossRef]
- Kurauchi, F.; Bell, M.G.; Schmöcker, J.-D. Capacity constrained transit assignment with common lines. J. Math. Model. Algorithms 2003, 2, 309–327. [Google Scholar] [CrossRef]
- Schmöcker, J.-D.; Fonzone, A.; Shimamoto, H.; Kurauchi, F.; Bell, M.G. Frequency-based transit assignment considering seat capacities. Transp. Res. Part B Methodol. 2011, 45, 392–408. [Google Scholar] [CrossRef]
- Trozzi, V.; Gentile, G.; Bell, M.G.; Kaparias, I. Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths. Transp. Res. Part B Methodol. 2013, 57, 266–285. [Google Scholar] [CrossRef]
- Gentile, G.; Meschini, L.; Papola, N. Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks. Transp. Res. Part B Methodol. 2007, 41, 1114–1138. [Google Scholar] [CrossRef]
- Cheung, L.L.; Shalaby, A.S. System optimal re-routing transit assignment heuristic: A theoretical framework and large-scale case study. Int. J. Transp. Sci. Technol. 2017, 6, 287–300. [Google Scholar] [CrossRef]
- Oliker, N.; Bekhor, S. A frequency based transit assignment model that considers online information. Transp. Res. Part C Emerg. Technol. 2018, 88, 17–30. [Google Scholar] [CrossRef]
- Oliker, N.; Bekhor, S. A frequency based transit assignment model that considers online information and strict capacity constraints. EURO J. Transp. Logist. 2020, 9, 100005. [Google Scholar] [CrossRef]
- Baaj, M.H.; Mahmassani, H. An AI-Based Approach for Transit Route System Planning and Design. J. Adv. Transp. 1991, 25, 187–210. [Google Scholar] [CrossRef]
- Shih, M.-C.; Mahmassani, H. A Design Methodology for Bus Transit Networks with Coordinated Operation. Ph.D. Thesis, Center for Transportation, Bureau of Engineering Research, University of Texas: Austin, TX, USA, 1994. [Google Scholar]
- Baaj, M.H.; Mahmassani, H. Hybrid Route Generation Heuristic Algorithm for the Design of Transit Networks. Transp. Res. Part C Emerg. Technol. 1995, 3, 31–50. [Google Scholar] [CrossRef]
- Tom, V.; Mohan, S. Transit route network design using frequency coded genetic algorithm. J. Transp. Eng. 2003, 129, 186–195. [Google Scholar] [CrossRef]
- Szeto, W.Y.; Wu, Y. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong. Eur. J. Oper. Res. 2011, 209, 141–155. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Zhang, L.; Hua, W.; Li, K. A Pareto Artificial Fish Swarm Algorithm for Solving a Multi-Objective Electric Transit Network Design Problem. Transp. A Transp. Sci. 2020, 16, 1648–1670. [Google Scholar] [CrossRef]
- Du, M.; Cun, D.; Chen, A.; Tan, H. A Weibit-Based sequential transit assignment model based on hyperpath graph and generalized extreme value network representation. Transp. Res. Part C Emerg. Technol. 2023, 151, 104142. [Google Scholar] [CrossRef]
- Ngamchai, S.; Lovell, D.J. Optimal time transfer in bus transit route network design using a genetic algorithm. J. Transp. Eng. 2003, 129, 510–521. [Google Scholar] [CrossRef]
- Agrawal, J.; Mathew, T.V. Transit route network design using parallel genetic algorithm. J. Comput. Civ. Eng. 2004, 18, 248–256. [Google Scholar] [CrossRef]
- Fan, L.; Mumford, C.L. A metaheuristic approach to the urban transit routing problem. J. Heuristics 2010, 16, 353–372. [Google Scholar] [CrossRef]
- Gutiérrez-Jarpa, G.; Laporte, G.; Marianov, V.; Moccia, L. Multi-objective rapid transit network design with modal competition: The case of Concepción, Chile. Comput. Oper. Res. 2017, 78, 27–43. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Kepaptsoglou, K. Integrated transit route network design and infrastructure planning for on-line electric vehicles. Transp. Res. Part D Transp. Environ. 2019, 77, 178–197. [Google Scholar] [CrossRef]
- Ahmed, L.; Mumford, C.; Kheiri, A. Solving urban transit route design problem using selection hyper-heuristics. Eur. J. Oper. Res. 2019, 274, 545–559. [Google Scholar] [CrossRef]
- Fan, W.; Machemehl, R.B. Tabu search strategies for the public transportation network optimizations with variable transit demand. Comput. Aided Civ. Infrastruct. Eng. 2008, 23, 502–520. [Google Scholar] [CrossRef]
- Nikolić, M.; Teodorović, D. Transit network design by bee colony optimization. Expert Syst. Appl. 2013, 40, 5945–5955. [Google Scholar] [CrossRef]
- Kechagiopoulos, P.N.; Beligiannis, G.N. Solving the urban transit routing problem using a particle swarm optimization based algorithm. Appl. Soft Comput. 2014, 21, 654–676. [Google Scholar] [CrossRef]
- Nayeem, M.A.; Rahman, M.K.; Rahman, M.S. Transit network design by genetic algorithm with elitism. Transp. Res. Part C Emerg. Technol. 2014, 46, 30–45. [Google Scholar] [CrossRef]
- Islam, K.A.; Moosa, I.M.; Mobin, J.; Nayeem, M.A.; Rahman, M.S. A heuristic aided Stochastic Beam Search algorithm for solving the transit network design problem. Swarm Evol. Comput. 2019, 46, 154–170. [Google Scholar] [CrossRef]
- Cervantes-Sanmiguel, K.I.; Chavez-Hernandez, M.V.; Ibarra-Rojas, O.J. Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design. Transp. Res. Part B Methodol. 2023, 173, 142–161. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. An optimal metro design for transit networks in existing square cities based on non-demand criterion. Sustainability 2020, 12, 9566. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. Design scheme of multiple-subway lines for minimizing passengers transfers in mega-cities transit networks. Int. J. Rail Transp. 2021, 9, 540–563. [Google Scholar] [CrossRef]
- Arbex, R.O.; da Cunha, C.B. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp. Res. Part B Methodol. 2015, 81, 355–376. [Google Scholar] [CrossRef]
- Zhao, F.; Ubaka, I. Transit network optimization-minimizing transfers and optimizing route directness. J. Public Transp. 2004, 7, 4. [Google Scholar] [CrossRef]
- Mauttonw, A.; Urquhart, M. A route set construction algorithm for the transit network design problem. Comput. Oper. Res. 2009, 36, 2440–2449. [Google Scholar] [CrossRef]
- Zhao, F.; Ubaka, I.; Gan, A. Transit network optimization: Minimizing transfers and maximizing service coverage with an integrated simulated annealing and tabu search method. Transp. Res. Rec. 2005, 1923, 180–188. [Google Scholar] [CrossRef]
- Marín, Á. An extension to rapid transit network design problem. Top 2007, 15, 231–241. [Google Scholar] [CrossRef]
- Guan, J.; Yang, H.; Wirasinghe, S.C. Simultaneous optimization of transit line configuration and passenger line assignment. Transp. Res. Part B Methodol. 2006, 40, 885–902. [Google Scholar] [CrossRef]
- Goerigk, M.; Schmidt, M. Line planning with user-optimal route choice. Eur. J. Oper. Res. 2017, 259, 424–436. [Google Scholar] [CrossRef]
- Bagloee, S.A.; Ceder, A.A. Transit-network design methodology for actual-size road networks. Transp. Res. Part B Methodol. 2011, 45, 1787–1804. [Google Scholar] [CrossRef]
- Owais, M.; Moussa, G.; Abbas, Y.; El-Shabrawy, M. Simple and effective solution methodology for transit network design problem. Int. J. Comput. Appl. 2014, 89, 32–40. [Google Scholar] [CrossRef]
- Ul Abedin, Z. A Methodology to Design Multimodal Public Transit Networks: Procedures and Applications; Nanyang Technological University: Singapore, 2019. [Google Scholar]
- Krylatov, A.; Zakharov, V.; Tuovinen, T.; Krylatov, A.; Zakharov, V.; Tuovinen, T. Principles of wardrop for traffic assignment in a road network. In Optimization Models and Methods for Equilibrium Traffic Assignment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–43. [Google Scholar]
- Idriss, L.K.; Owais, M. Global sensitivity analysis for seismic performance of shear wall with high-strength steel bars and recycled aggregate concrete. Constr. Build. Mater. 2024, 411, 134498. [Google Scholar] [CrossRef]
- Sheffi, Y.; Powell, W. A comparison of stochastic and deterministic traffic assignment over congested networks. Transp. Res. Part B Methodol. 1981, 15, 53–64. [Google Scholar] [CrossRef]
- Sheffi, Y.; Powell, W.B. An algorithm for the equilibrium assignment problem with random link times. Networks 1982, 12, 191–207. [Google Scholar] [CrossRef]
- Nielsen, O.A.; Frederiksen, R.D. Optimisation of timetable-based, stochastic transit assignment models based on MSA. Ann. Oper. Res. 2006, 144, 263–285. [Google Scholar] [CrossRef]
- Di Gangi, M.; Cantarella, G.; Vitetta, A. MSA Algorithms for solving SUE in Urban Transit Networks. In Proceedings of the 4th hEART Conference, Lyngby, Denmark, 15–18 August 2011. [Google Scholar]
- Sheffi, Y. Urban Transportation Networks; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985; Volume 6. [Google Scholar]
- Ren, H.; Song, Y.; Long, J.; Si, B. A new transit assignment model based on line and node strategies. Transp. Res. Part B Methodol. 2021, 150, 121–142. [Google Scholar] [CrossRef]
- Stern, R. Passenger Transfer System Review; Transportation Research Board: Washington, DC, USA, 1996; Volume 19. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.; Owais, M.; Ahmed, A.S. Notes on Bus User Assignment Problem Using Section Network Representation Method. Appl. Sci. 2024, 14, 3406. https://doi.org/10.3390/app14083406
Almutairi A, Owais M, Ahmed AS. Notes on Bus User Assignment Problem Using Section Network Representation Method. Applied Sciences. 2024; 14(8):3406. https://doi.org/10.3390/app14083406
Chicago/Turabian StyleAlmutairi, Ahmed, Mahmoud Owais, and Abdou S. Ahmed. 2024. "Notes on Bus User Assignment Problem Using Section Network Representation Method" Applied Sciences 14, no. 8: 3406. https://doi.org/10.3390/app14083406
APA StyleAlmutairi, A., Owais, M., & Ahmed, A. S. (2024). Notes on Bus User Assignment Problem Using Section Network Representation Method. Applied Sciences, 14(8), 3406. https://doi.org/10.3390/app14083406