A New Method Using Artificial Neural Networks to Group Mines into Similar Sets for Efficient Management and Transformation
Abstract
1. Introduction
2. Methods of Grouping Objects into Sets of Similar Objects
3. The Research Method Used
- The weights of the neurons are initialised (random numbers of small value).
- A vector X containing the learning data is randomly selected from the learning dataset and fed into the input of the network.
- For each neuron, the Euclidean distance d of its weights W from the drawn vector is calculated. The neuron whose weights are closest is referred to as the Best Matching Unit (BMU). The distance d is determined from the following relation (Equation (1)):where n—length of the vector of learning data, k—neuron number and N—number of neurons.
- In the next step, the BMU neighbourhood radius r is calculated. This is a value that decreases with each iteration. It is calculated from the following (Equation (2)):where it—iteration number, —initial neighbourhood radius and λ—constant characterising the decrease in radius as a function of iterations.
- The weights of all neurons within the neighbourhood radius (including the BMU— < r) are modified to be more similar to the input vector. The closer a neuron is to the BMU, the more its weights are modified, according to the following relation (Equation (3)):
- The learning factor L is modified according to the following relation (Equation (4)):where it—the number of iterations, —the initial learning factor and μ—a constant characterising the decrease in the learning factor as a function of the number of iterations.
- There is a return to step 2 until the set number of iterations is reached.
4. The Data Characterising the Mines: The Adopted Structure of the SOM Network and the Results of the Calculations
- o
- average daily output,
- o
- length of longwall front,
- o
- output per meter,
- o
- intensity of preparatory works,
- o
- number of total active longwalls,
- o
- average longwall length.
- o
- Group 1: 1 2 3 4 10 17 20 23 24 25 27 30 36
- o
- Group 2: 13 16 18 39
- o
- Group 3: 7 26 28 37
- o
- Group 4: 5 6 8 9 11 12 14 15 19 21 22 29 31 32 33 34 35 38
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Osowski, S. Sieci Neuronowe w Ujęciu Algorytmicznym; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 1996. [Google Scholar]
- De Candolle, A. Theorie Élémentaire de la Botanique; Déterville: París, France, 1813. [Google Scholar]
- Hellwig, Z. Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Prz. Stat. 1968, 4, 307–326. [Google Scholar]
- Kaufmann, A.; Faure, R. Badania Operacyjne na co Dzień; PWN: Warsaw, Poland, 1968. [Google Scholar]
- Lance, G.N.; Williams, W.T. A General Theory of Classificatory Sorting Strategies, 1. Hierarchical Systems. Comput. J. 1967, 9, 373–380. [Google Scholar] [CrossRef]
- Valdecasas, A.G.; Pelaéz, M.L.; Wheeler, Q.D.; de Carvalho, M.R. Evidence-Based Taxonomy: Labels as Illocutionary Acts. Taxonomy 2022, 2, 339–346. [Google Scholar] [CrossRef]
- De Carvalho, M.R.; Ebach, M.C.; Williams, D.M.; Nihei, S.S. Trefaut Rodrigues, The taxonomic impediment: A shortage of taxonomists, not the lack of technical approaches. Zool. J. Linn. Soc. 2021, 193, 381–387. [Google Scholar]
- De Carvalho, M.R.; Ebach, M.C.; Williams, D.M.; Nihei, S.S.; Rodrigues, M.T.; Grant, T.; Silveira, L.F.; Zaher, H.; Gill, A.C.; Schelly, R.C.; et al. Does counting species count as taxonomy? On misrepresenting systematics, yet again. Cladistics 2014, 30, 322–329. [Google Scholar] [CrossRef]
- Bello, E.; Becerra, J.M.; Valdecasas, A.G. Counting on taxonomy. Nature 1992, 357, 531. [Google Scholar] [CrossRef]
- Figueroa-Zúñiga, J.; Toledo, J.G.; Lagos-Alvarez, B.; Leiva, V.; Navarrete, J.P. Inference Based on the Stochastic Expectation Maximization Algorithm in a Kumaraswamy Model with an Application to COVID-19 Cases in Chile. Mathematics 2023, 11, 2894. [Google Scholar] [CrossRef]
- Zakkour, A.; Perret, C.; Slaoui, Y. Stochastic Expectation Maximization Algorithm for Linear Mixed-Effects Model with Interactions in the Presence of Incomplete Data. Entropy 2023, 25, 473. [Google Scholar] [CrossRef]
- Meng, X.L.; van Dyk, D. The EM algorithm—An old folk-song sung to a fast new tune. J. R. Stat. Soc. 1997, 59, 511–567. [Google Scholar] [CrossRef]
- Ng, S.K.; Krishnan, T.; McLachlan, G.J. The EM Algorithm. In Handbook of Computational Statistics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 139–172. ISBN 978-3-642-21550-6. [Google Scholar] [CrossRef]
- Akdemir, D.; Somo, M.; Isidro-Sanchéz, J. An Expectation-Maximization Algorithm for Combining a Sample of Partially Overlapping Covariance Matrices. Axioms 2023, 12, 161. [Google Scholar] [CrossRef]
- Lartigue, T.; Durrleman, S.; Allassonnière, S. Deterministic Approximate EM Algorithm; Application to the Riemann Approximation EM and the Tempered EM. Algorithms 2022, 15, 78. [Google Scholar] [CrossRef]
- Nielsen, F.S. The stochastic EM algorithm: Estimation and asymptotic results. Bernoulli 2000, 6, 457–489. [Google Scholar] [CrossRef]
- Gore, P. Cluster Analysis. In Handbook of Applied Multivariate Statistics and Mathematical Modelling; Tinsley, H., Brown, S., Eds.; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Tryon, R. Cluster Analysis; McGraw-Hill: New York, NY, USA, 1939. [Google Scholar]
- Cattell, R. A note on correlation clusters and cluster search methods. Psychometrica 1944, 9, 169–184. [Google Scholar] [CrossRef]
- Han, W.-J.; Wang, J.S.-H. Changing employment and work schedule patterns over the 30 working years. Int. J. Environ. Res. Public Health 2022, 19, 13677. [Google Scholar] [CrossRef]
- Dabbura, I. K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. Available online: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a (accessed on 30 March 2024).
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Lasek, M.; Myzik, A. Sieci neuronowe Kohonena w przeprowadzaniu analiz danych: Próba wykorzystania w eksploracji danych dotyczących jednostek terytorialnych. Probl. Zarządz. 2012, 10, 124–147. [Google Scholar]
- Ptak-Chmielewska, A.; Chłon-Dominczak, A. Spatial Conditions Supporting Sustainable Development of Enterprises on Local Level. Sustainability 2021, 13, 2292. [Google Scholar] [CrossRef]
- StatSoft, Elektroniczny Podręcznik Statystyki PL, Krakow. 2006. Available online: http://www.statsoft.pl/textbook/stathome.html (accessed on 30 March 2024).
- Miranda, E.; Suñé, J. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications. Materials 2020, 13, 938. [Google Scholar] [CrossRef]
- Amir, A. Self Organizing Map (SOM) with Practical Implementation, The Art of Data Scicne. 2019. Available online: https://medium.com/machine-learning-researcher/self-organizing-map-som-c296561e2117 (accessed on 30 March 2024).
- Nunes da Silva, I.; Hernane Spatti, D.; Andrade Flauzino, R.; Bartocci Liboni, L.H. Self-Organizing Kohonen Networks. In Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 157–172. [Google Scholar]
- Tarka, D. Własności cech diagnostycznych w badaniach typu taksonomicznego. Ekon. I Zarządz. 2010, 2, 194–203. [Google Scholar]
- Lu, S.; Segall, R.S. Multi-SOM: An Algorithm for High-Dimensional, Small Size Datasets. Syst. Cybern. Inform. 2013, 11, 41–46. [Google Scholar]
- Shanthi, S. A Novel SOM Ensemble Classification Technique for Limited Data. In Futuristic Trends for Sustainable Development and Sustainable Ecosystems; IGI Global: Hershey, PA, USA, 2022; pp. 76–88. [Google Scholar] [CrossRef]
- Kokol, P.; Kokol, M.; Zagoranski, S. Machine learning on small size samples: A synthetic knowledge synthesis. Sci. Prog. 2022, 105, 1–16. [Google Scholar] [CrossRef]
- Tadeusiewicz, R.; Gąciarz, T.; Borowik, B.; Leper, B. Odkrywanie Właściwości Sieci Neuronowych Przy Użyciu Programów w Języku C#; Wydawnictwa PAU: Krakow, Poland, 2007. [Google Scholar]



| Mine | Average Daily Output | Length of Longwall Front | Output per Meter | Intensity of Preparatory Works | Number of Total Active Longwalls | Average Longwall Length |
|---|---|---|---|---|---|---|
| [t/d] | [m] | [t/m] | [pcs.] | [m] | ||
| 1 | 6349 | 536 | 11.845 | 5 | 2.9 | 184.828 |
| 2 | 6212 | 532 | 11.677 | 5.2 | 3 | 177.333 |
| 3 | 6928 | 776 | 8.928 | 4.7 | 4.3 | 180.465 |
| 4 | 5366 | 589 | 9.11 | 2.9 | 3 | 196.333 |
| 5 | 6667 | 1041 | 6.404 | 3.4 | 3.9 | 266.923 |
| 6 | 10,845 | 1027 | 10.56 | 4.1 | 4.2 | 244.524 |
| 7 | 14,595 | 1686 | 8.657 | 3.2 | 5.8 | 290.69 |
| 8 | 8585 | 851 | 10.088 | 3.2 | 3.5 | 243.143 |
| 9 | 8059 | 984 | 8.19 | 4.1 | 4.9 | 200.816 |
| 10 | 5340 | 639 | 8.357 | 8.1 | 3.1 | 206.129 |
| 11 | 11,121 | 1123 | 9.903 | 5 | 4.8 | 233.958 |
| 12 | 11,662 | 990 | 11.78 | 4.8 | 4.3 | 230.233 |
| 13 | 12,218 | 766 | 15.95 | 2.4 | 3.4 | 225.294 |
| 14 | 11,702 | 938 | 12.475 | 4.4 | 3.9 | 240.513 |
| 15 | 4912 | 1001 | 4.907 | 2.8 | 4.9 | 204.286 |
| 16 | 10,321 | 607 | 17.003 | 3.1 | 2.7 | 224.815 |
| 17 | 6822 | 627 | 10.88 | 3.1 | 3.6 | 174.167 |
| 18 | 13,817 | 734 | 18.824 | 3.7 | 3.2 | 229.375 |
| 19 | 7855 | 858 | 9.155 | 3.9 | 4 | 214.5 |
| 20 | 8307 | 765 | 10.859 | 4.3 | 4.4 | 173.864 |
| 21 | 12,625 | 921 | 13.708 | 4.5 | 3.8 | 242.368 |
| 22 | 7307 | 762 | 9.589 | 2.2 | 3.1 | 245.806 |
| 23 | 3966 | 345 | 11.496 | 5.9 | 2.6 | 132.692 |
| 24 | 9323 | 684 | 13.63 | 5.2 | 3 | 228 |
| 25 | 8198 | 509 | 16.106 | 6.5 | 2.7 | 188.519 |
| 26 | 24,382 | 1548 | 15.751 | 3 | 7.3 | 212.055 |
| 27 | 4543 | 497 | 9.141 | 4 | 2 | 248.5 |
| 28 | 16,098 | 1292 | 12.46 | 3.2 | 6 | 215.333 |
| 29 | 9716 | 868 | 11.194 | 5 | 3.9 | 222.564 |
| 30 | 7295 | 713 | 10.231 | 5.8 | 3.2 | 222.813 |
| 31 | 10,498 | 884 | 11.876 | 5.4 | 3.5 | 252.571 |
| 32 | 10,560 | 801 | 13.184 | 5 | 3.5 | 228.857 |
| 33 | 16,061 | 1177 | 13.646 | 5.1 | 4.5 | 261.556 |
| 34 | 9978 | 1022 | 9.763 | 5.3 | 4.1 | 249.268 |
| 35 | 10,731 | 1214 | 8.839 | 4.6 | 5.7 | 212.982 |
| 36 | 8521 | 748 | 11.392 | 5.3 | 3.2 | 233.75 |
| 37 | 14,690 | 1640 | 8.957 | 4 | 7.1 | 230.986 |
| 38 | 9131 | 972 | 9.394 | 5 | 5 | 194.4 |
| 39 | 10,964 | 550 | 19.935 | 4.3 | 2.2 | 250 |
| Mine | Average Daily Output | Length of Longwall Front | Output per Meter | Intensity of Preparatory Works | Number of Total Active Longwalls | Average Longwall Length |
|---|---|---|---|---|---|---|
| [t/d] | [m] | [t/m] | [pcs.] | [m] | ||
| 1 | 6349 | 536 | 11.845 | 5 | 2.9 | 184.828 |
| 2 | 6212 | 532 | 11.677 | 5.2 | 3 | 177.333 |
| 3 | 6928 | 776 | 8.928 | 4.7 | 4.3 | 180.465 |
| 4 | 5366 | 589 | 9.110 | 2.9 | 3 | 196.333 |
| 10 | 5340 | 639 | 8.357 | 8.1 | 3.1 | 206.129 |
| 17 | 6822 | 627 | 10.88 | 3.1 | 3.6 | 174.167 |
| 20 | 8307 | 765 | 10.859 | 4.3 | 4.4 | 173.864 |
| 23 | 3966 | 345 | 11.496 | 5.9 | 2.6 | 132.692 |
| 24 | 9323 | 684 | 13.630 | 5.2 | 3 | 228.000 |
| 25 | 8198 | 509 | 16.106 | 6.5 | 2.7 | 188.519 |
| 27 | 4543 | 497 | 9.141 | 4.0 | 2 | 248.500 |
| 30 | 7295 | 713 | 10.231 | 5.8 | 3.2 | 222.813 |
| 36 | 8521 | 748 | 11.392 | 5.3 | 3.2 | 233.750 |
| Mine | Average Daily Output | Length of Longwall Front | Output per Meter | Intensity of Preparatory Works | Number of Total Active Longwalls | Average Longwall Length |
|---|---|---|---|---|---|---|
| [t/d] | [m] | [t/m] | [pcs.] | [m] | ||
| 13 | 12,218 | 766 | 15.950 | 2.4 | 3.4 | 225.294 |
| 16 | 10,321 | 607 | 17.003 | 3.1 | 2.7 | 224.815 |
| 18 | 13,817 | 734 | 18.824 | 3.7 | 3.2 | 229.375 |
| 39 | 10,964 | 550 | 19.935 | 4.3 | 2.2 | 250.000 |
| Mine | Average Daily Output | Length of Longwall Front | Output per Meter | Intensity of Preparatory Works | Number of Total Active Longwalls | Average Longwall Length |
|---|---|---|---|---|---|---|
| [t/d] | [m] | [t/m] | [pcs.] | [m] | ||
| 7 | 14,595 | 1686 | 8.657 | 3.2 | 5.8 | 290.690 |
| 26 | 24,382 | 1548 | 15.751 | 3 | 7.3 | 212.055 |
| 28 | 16,098 | 1292 | 12.460 | 3.2 | 6 | 215.333 |
| 37 | 14,690 | 1640 | 8.957 | 4 | 7.1 | 230.986 |
| Mine | Average Daily Output | Length of Longwall Front | Output per Meter | Intensity of Preparatory Works | Number of Total Active Longwalls | Average Longwall Length |
|---|---|---|---|---|---|---|
| [t/d] | [m] | [t/m] | [pcs.] | [m] | ||
| 5 | 6667 | 1041 | 6.404 | 3.4 | 3.9 | 266.923 |
| 6 | 10,845 | 1027 | 10.56 | 4.1 | 4.2 | 244.524 |
| 8 | 8585 | 851 | 10.088 | 3.2 | 3.5 | 243.143 |
| 9 | 8059 | 984 | 8.190 | 4.1 | 4.9 | 200.816 |
| 11 | 11,121 | 1123 | 9.903 | 5 | 4.8 | 233.958 |
| 12 | 11,662 | 990 | 11.780 | 4.8 | 4.3 | 230.233 |
| 14 | 11,702 | 938 | 12.475 | 4.4 | 3.9 | 240.513 |
| 15 | 4912 | 1001 | 4.907 | 2.8 | 4.9 | 204.286 |
| 19 | 7855 | 858 | 9.155 | 3.9 | 4 | 214.500 |
| 21 | 12,625 | 921 | 13.708 | 4.5 | 3.8 | 242.368 |
| 22 | 7307 | 762 | 9.589 | 2.2 | 3.1 | 245.806 |
| 29 | 9716 | 868 | 11.194 | 5 | 3.9 | 222.564 |
| 31 | 10,498 | 884 | 11.876 | 5.4 | 3.5 | 252.571 |
| 32 | 10,560 | 801 | 13.184 | 5 | 3.5 | 228.857 |
| 33 | 16,061 | 1177 | 13.646 | 5.1 | 4.5 | 261.556 |
| 34 | 9978 | 1022 | 9.763 | 5.3 | 4.1 | 249.268 |
| 35 | 10,731 | 1214 | 8.839 | 4.6 | 5.7 | 212.982 |
| 38 | 9131 | 972 | 9.394 | 5 | 5 | 194.400 |
| Mine | Unit Cost Production | Mine | Unit Cost Production |
|---|---|---|---|
| [PLN/GJ] | [PLN/GJ] | ||
| 1 | 4.55 | 21 | 5.95 |
| 2 | 4.64 | 22 | 5.99 |
| 3 | 4.66 | 23 | 7.33 |
| 4 | 4.8 | 24 | 6.06 |
| 5 | 4.93 | 25 | 6.06 |
| 6 | 5.10 | 26 | 5.51 |
| 7 | 5.24 | 27 | 5.79 |
| 8 | 5.25 | 28 | 5.35 |
| 9 | 5.29 | 29 | 6.08 |
| 10 | 6.89 | 30 | 6.12 |
| 11 | 5.51 | 31 | 6.41 |
| 12 | 5.74 | 32 | 6.52 |
| 13 | 5.03 | 33 | 5.02 |
| 14 | 5.75 | 34 | 6.58 |
| 15 | 5.75 | 35 | 6.67 |
| 16 | 5.41 | 36 | 6.86 |
| 17 | 5.87 | 37 | 5.40 |
| 18 | 5.64 | 38 | 7.61 |
| 19 | 5.88 | 39 | 5.67 |
| 20 | 5.91 | ||
| MEDIAN: 5.75 | |||
| Median—Division into 4 Sets | |
|---|---|
| Group 3: 7 26 28 37 | 5.375 |
| Group 2: 13 16 18 39 | 5.525 |
| Median unit cost of the total data | 5.750 |
| Group 4: 5 6 8 9 11 12 14 15 19 21 22 29 31 32 33 34 35 38 | 5.815 |
| Group 1: 1 2 3 4 10 17 20 23 24 25 27 30 36 | 5.910 |
| SOM | k-Means | |
|---|---|---|
| Group 1 | 1 2 3 4 10 17 20 23 24 25 27 30 36 | 1 2 10 23 25 27 30 |
| Group 2 | 13 16 18 39 | 13 14 16 18 21 24 31 32 33 36 39 |
| Group 3 | 7 26 28 37 | 7 26 28 37 |
| Group 4 | 5 6 8 9 11 12 14 15 19 21 22 29 31 32 33 34 35 38 | 3 4 5 6 8 9 11 12 15 17 19 20 22 29 34 35 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyganowska, M.; Bańka, P. A New Method Using Artificial Neural Networks to Group Mines into Similar Sets for Efficient Management and Transformation. Appl. Sci. 2024, 14, 3350. https://doi.org/10.3390/app14083350
Wyganowska M, Bańka P. A New Method Using Artificial Neural Networks to Group Mines into Similar Sets for Efficient Management and Transformation. Applied Sciences. 2024; 14(8):3350. https://doi.org/10.3390/app14083350
Chicago/Turabian StyleWyganowska, Małgorzata, and Piotr Bańka. 2024. "A New Method Using Artificial Neural Networks to Group Mines into Similar Sets for Efficient Management and Transformation" Applied Sciences 14, no. 8: 3350. https://doi.org/10.3390/app14083350
APA StyleWyganowska, M., & Bańka, P. (2024). A New Method Using Artificial Neural Networks to Group Mines into Similar Sets for Efficient Management and Transformation. Applied Sciences, 14(8), 3350. https://doi.org/10.3390/app14083350

