Impact of Customized Content in 3D Virtual Reality Motionless Imagery Exercise through Avatar on Emotional Well-Being, Cognition, and Physiological Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Content Development
2.4. Apparatus
3. Measurement
Statistical Analysis
4. Results
4.1. Emotional Well-Being
4.2. Cognition
4.3. Physiological Response
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callow, D.D.; Arnold-Nedimala, N.A.; Jordan, L.S.; Pena, G.S.; Won, J.; Woodard, J.L.; Smith, J.C. The mental health benefits of physical activity in older adults survive the COVID-19 pandemic. Am. J. Geriatr. Psychiatry 2020, 28, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.; Stojanovska, L.; Polenakovic, M.; Bosevski, M.; Apostolopoulos, V. Exercise and mental health. Maturitas 2017, 106, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.A.; Buckwalter, J.G. Virtual realityand cognitive assessment and rehabilitation: The state of the art. Stud. Health Technol. Inform. 1997, 44, 123–145. [Google Scholar] [CrossRef]
- Paivio, A. Cognitive and motivational funtions of imagery in human performance. Can. J. Appl. Sport Sci. 1985, 10, 22–28. [Google Scholar]
- Stins, J.F.; Schneider, I.K.; Koole, S.L.; Beek, P.J. The influence of motor imagery on postural sway: Differential effects of type of body movement and person perspective. Adv. Cogn. Psychol. 2015, 11, 77–83. [Google Scholar] [CrossRef]
- Vealey, R.S.; Greenleaf, C. A seeing is believing: Understanding and using Imagery in sport. In Applied Sport Psychology: Personal Growth to Peak Performance, 4th ed.; Williams, J.M., Ed.; Mayfield: Mountain View, CA, USA, 2001; pp. 247–283. [Google Scholar]
- Bai, O.; Huang, D.; Fei, D.-Y.; Kunz, R. Effect of real-time cortical feedback in motor imagery-based mental practice training. NeuroRehabilitation 2014, 34, 355–363. [Google Scholar] [CrossRef]
- Nyberg, L.; Eriksson, J.; Larsson, A.; Marklund, P. Learning by doing versus learning by thinking: An fMRI study of motor and mental training. Neuropsychologia. 2006, 44, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.J.; Jonsson, B.; Nyberg, L. Learning by doing and learning by thinking: An fMRI study of combining motor and mental training. Front. Hum. Neurosci. 2008, 2, 5. [Google Scholar] [CrossRef]
- Wolf, S.L.; Winstein, C.J.; Miller, J.P.; A Thompson, P.; Taub, E.; Uswatte, G.; Morris, D.; Blanton, S.; Nichols-Larsen, D.; Clark, P.C. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: The EXCITE randomised trial. Lancet Neurol. 2008, 7, 33–40. [Google Scholar] [CrossRef]
- Bértolo, H. Visual imagery without visual perception? Psicológica 2005, 26, 173–188. [Google Scholar]
- Moon, K.J.; Lee, M.C.; Han, K.H. Effects of 3D virtual reality motionless imagery training program with an avatar. PsyCh J. 2023, 12, 169–177. [Google Scholar] [CrossRef]
- Bernstein, E.E.; McNally, R.J. Exercise as a buffer against difficulties with emotion regulation: A pathway to emotional wellbeing. Behav. Res. Ther. 2018, 109, 29–36. [Google Scholar] [CrossRef]
- Handfield, R.; Nichols, E.L., Jr. Supply Chain Redesign: Transforming Supply Chains into Integrated Value Systems; Financial Prentice Hall: New York, NY, USA, 2002; pp. 75–105. [Google Scholar]
- Jeon, J.H.; Casper, J. Psychological antecedents of youth versus adult participation: An examination based on the Sport Commitment Model. J. Amat. Sport 2016, 2, 103–125. [Google Scholar] [CrossRef]
- Anderson-Hanley, C.; Snyder, A.L.; Nimon, J.P.; Arciero, P.J. Social facilitation in virtual reality-enhanced exercise: Competitiveness moderates exercise effort of older adults. Clin. Interv. Aging 2011, 6, 275–280. [Google Scholar] [CrossRef]
- Feltz, D.L.; Irwin, B.; Kerr, N. Two-player partnered exergame for obesity prevention: Using discrepancy in players’ abilities as a strategy to motivate physical activity. J. Diabetes Sci. Technol. 2012, 6, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Spiegler, K.M.; Sauce, B.; Wass, C.D.; Sturzoiu, T.; Matzel, L.D. Voluntary aerobic exercise increases the cognitive enhancing effects of working memory training. Behav. Brain Res. 2013, 256, 626–635. [Google Scholar] [CrossRef] [PubMed]
- John, D.O.; Tella, B.A.; Olawale, O.A.; John, J.N.; Adeyemo, T.A.; Okezue, O.C. Effects of a 6-week aerobic exercise programme on the cardiovascular parameters, body composition, and quality of life of people living with human immune virus. J. Exerc. Rehabil. 2018, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- Lum, D.; Barbosa, T.M.; Aziz, A.R.; Balasekaran, G. Effects of isometric strength and plyometric training on running performance: A randomized controlled study. Res. Q. Exerc. Sport 2023, 94, 263–271. [Google Scholar] [CrossRef]
- Feltz, D.L.; Kerr, N.L.; Irwin, B.C. Buddy up: The Köhler effect applied to health games. J. Sport Exerc. Psychol. 2011, 33, 506–526. [Google Scholar] [CrossRef] [PubMed]
- Cassell, J.; Vilhjálmsson, H. Fully embodied conversational avatars: Making communicative behaviors autonomous. Auton. Agents Multi-Agent Syst. 1999, 2, 45–64. [Google Scholar] [CrossRef]
- Kim, J.T.; Shin, D.G. A Study on Korean Standardization of SAI. Mod. Med. 1978, 21, 69–75. [Google Scholar]
- Spielberger, C.D. Manual for the State-Trait Anxiety, Inventory; Consulting Psychologist: Palo Alto, CA, USA, 1970. [Google Scholar]
- Ryckman, R.M.; Robbins, M.A.; Thornton, B.; Cantrell, P. Development and validation of a physical self-efficacy scale. J. Pers. Soc. Psychol. 1982, 42, 891–900. [Google Scholar] [CrossRef]
- Reivich, K.; Shatte, A. The Resilience Factor: 7 Keys to Finding Your Inner Strength and Overcoming Life’s Hurdles; Harmony: Easton, PA, USA, 2003. [Google Scholar]
- Koh, K.B.; Park, J.K.; Kim, C.H.; Cho, S. Development of the stress response inventory and its application in clinical practice. Psychosom. Med. 2001, 63, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measure of positive and negative affect: The PANAS Scales. J. Pers. Soc. Psychol. 1998, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Seo, E.H. Korean Stroop Color-Word Test for Senior [Measurement Instrument]; Inpsyt: Seoul, Republic of Korea, 2017. [Google Scholar]
- Kim, H.K. Rey-Kim Memory Test; Neuropsychology Press: Seoul, Republic of Korea, 1999. [Google Scholar]
- Hwang, S.; Kim, J.; Park, K.; Chey, J.; Hong, S. Korean Wechsler Adult Intelligence Scale-IV; Korea Psychology: Daegu, Republic of Korea, 2012. [Google Scholar]
- Kang, Y.; Na, D.L. Seoul Neuropsychological Screening Battery; Human Brain Research & Consulting Co.: Incheon, Republic of Korea, 2003. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1998. [Google Scholar]
- Annesi, J.J.; Mareno, N. Indirect effects of exercise on emotional eating through psychological predictors of weight loss in women. Appetite 2015, 95, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.L.; Kelley, B.C.; Williams, K.; Martin, J.J. The relationship of self-efficacy and perceived well-being to physical activity and stair climbing in older adults. Res. Q. Exerc. Sport 1994, 65, 367–371. [Google Scholar] [CrossRef]
- Anderson, P.L.; Molloy, A. Maximizing the impact of virtual reality exposure therapy for anxiety disorders. Curr. Opin. Psychol. 2020, 36, 153–157. [Google Scholar] [CrossRef]
- Guszkowska, M. Effects of exercise on anxiety, depression and mood. Psychiatr. Pol. 2004, 38, 611–620. [Google Scholar]
- Kazeminia, M.; Salari, N.; Vaisi-Raygani, A.; Jalali, R.; Abdi, A.; Mohammadi, M.; Daneshkhah, A.; Hosseinian-Far, M.; Shohaimi, S. The effect of exercise on anxiety in the elderly worldwide: A systematic review and meta-analysis. Health Qual. Life Outcomes 2020, 18, 363. [Google Scholar] [CrossRef]
- Feltz, D.L.; Riessinger, C.A. Effects of in vivo emotive imagery and performance feedback on self-efficacy and muscular endurance. J. Sport Exerc. Psychol. 1990, 12, 132–143. [Google Scholar] [CrossRef]
- Fitzsimmons, P.A.; Landers, D.M.; Thomas, J.R.; van der Mars, H. Does self-efficacy predict performance in experienced weight lifters? Res. Q. Exerc. Sport 1991, 62, 424–431. [Google Scholar] [CrossRef]
- David, F.; Mustafa, S. A grounded theory of psychological resilience in Olympic Champions. Psychol. Sport Exer. 2011, 13, 669–678. [Google Scholar] [CrossRef]
- Galli, N.; Vealey, R. Bouncing back from adversity: Athletes’ experiences of resilience. Sport Psychologist. 2008, 22, 316–335. [Google Scholar] [CrossRef]
- Lazarus, R.S. From psychological stress to the emotions: A history of changing outlooks. Annu. Rev. Psychol. 1993, 44, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Diener, E. Subjective well-being. Psychol. Bull. 1984, 95, 542–575. [Google Scholar] [CrossRef]
- King, L.A.; Pennebaker, J.W. What’s so great about feeling good. Psychol. Inq. 1998, 9, 53–56. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef]
- Kamijo, K.; Hayashi, Y.; Sakai, T.; Yahiro, T.; Tanaka, K.; Nishihira, Y. Acute effects of aerobic exercise on cognitive function in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2009, 64, 356–363. [Google Scholar] [CrossRef]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Harris, D.V.; Robinson, W.J. The effects of skill level on EMG activity during internal and external imagery. J. Sport Exerc. Psychol. 1986, 8, 105–111. [Google Scholar] [CrossRef]
- Kent, M. Oxford Dictionary of Sports Science and Medicine, 3rd ed.; OUP Oxford: New York, NY, USA, 2006; pp. 88–125. [Google Scholar]
Variables | Experimental (n = 20) | Control (n = 20) | |||
---|---|---|---|---|---|
Characteristic | Categorize | Frequency | Percentage | Frequency | Percentage |
Age (years) | M (SD) | 30 (7.69) | 29.40 (7.43) | ||
Sex | Male | 10 | 50 | 10 | 50 |
Female | 10 | 50 | 10 | 50 |
Variables | Group | Pre-Test | Post-Test | RM-ANOVA (F-Value) | |||||
---|---|---|---|---|---|---|---|---|---|
Time (p-Value) | pη2 | Group (p-Value) | pη2 | T × G (p-Value) | pη2 | ||||
State anxiety | Experimental | 44.00 ±9.11 | 33.45 ±6.61 | 19.622 (0.000) *** | 0.341 | 0.238 (0.629) | 0.006 | 2.624 (0.114) | 0.065 |
Control | 40.05 ±10.38 | 35.15 ±9.99 | |||||||
Trait anxiety | Experimental | 45.25 ±8.39 | 32.55 ±6.04 | 35.653 (0.000) *** | 0.484 | 0.619 (0.436) | 0.016 | 7.133 (0.011) * | 0.158 |
Control | 39.75 ±9.69 | 34.90 6.75 | |||||||
Physical self-efficacy | Experimental | 81.50 ±13.63 | 93.55 ±13.57 | 12.438 (0.001) ** | 0.247 | 0.089 (0.767) | 0.002 | 2.258 (0.141) | 0.056 |
Control | 86.20 ±15.17 | 91.05 ±13.10 | |||||||
Resilience | Experimental | 80.35 ±10.38 | 93.55 ±10.36 | 10.445 (0.003) ** | 0.216 | 1.844 (0.183) | 0.046 | 11.268 (0.002) ** | 0.229 |
Control | 91.05 ±12.79 | 90.80 ±11.14 | |||||||
Stress | Experimental | 36.50 ±28.54 | 9.85 ±16.87 | 16.187 (0.000) *** | 0.299 | 0.938 (0.339) | 0.024 | 4.537 (0.040) * | 0.107 |
Control | 21.80 ±20.62 | 13.60 ±22.44 | |||||||
Positive affect (PANAS) | Experimental | 23.10 ±8.45 | 34.80 ±8.56 | 7.965 (0.008) ** | 0.173 | 0.165 (0.687) | 0.004 | 11.416 (0.002) ** | 0.231 |
Control | 28.45 ±10.99 | 27.40 ±11.44 | |||||||
Negative affect (PANAS) | Experimental | 18.10 ±6.51 | 11.65 ±3.03 | 31.865 (0.000) *** | 0.456 | 4.506 (0.040)* | 0.106 | 2.223 (0.143) | 0.055 |
Control | 14.40 ±4.97 | 10.65 ±2.30 |
Variables | Group | Pre-Test | Post-Test | RM-ANOVA (F-Value) | |||||
---|---|---|---|---|---|---|---|---|---|
Time (p-Value) | pη2 | Group (p-Value) | pη2 | T × G (p-Value) | pη2 | ||||
STROOP | Experimental | 73.05 ±7.68 | 74.40 ±8.00 | 13.712 (0.001) ** | 0.265 | 24.572 (0.000) *** | 0.393 | 0.143 (0.708) | 0.004 |
Control | 63.10 ±4.72 | 64.20 ±4.91 | |||||||
Immediate recall (Rey–Kim Test) | Experimental | 47.50 ±9.67 | 49.25 ±9.62 | 5.583 (0.023) * | 0.128 | 4.891 (0.033) * | 0.114 | 6.259 (0.017) * | 0.141 |
Control | 43.10 ±5.06 | 46.05 ±4.79 | |||||||
Delayed recall (Rey–Kim Test | Experimental | 10.55 ±9.30 | 11.25 ±1.44 | 28.500 (0.000) *** | 0.429 | 10.614 (0.002) ** | 0.218 | 0.792 (0.379) | 0.020 |
Control | 9.30 ±1.08 | 9.80 ±1.10 | |||||||
Delayed recognition (Rey–Kim Test) | Experimental | 13.55 ±1.70 | 13.85 ±1.49 | 10.106 (0.003) ** | 0.210 | 0.056 (0.815) | 0.001 | 0.404 (0.529) | 0.011 |
Control | 13.70 ±1.12 | 13.90 ±1.02 | |||||||
Digit Span Task | Experimental | 34.55 ±4.52 | 36.55 ±3.59 | 10.584 (0.002) ** | 0.218 | 13.650 (0.001)** | 0.264 | 4.704 (0.036) * | 0.110 |
Control | 31.50 ±2.87 | 31.90 ±2.69 | |||||||
COWAT (semantic fluency) | Experimental | 48.50 ±8.15 | 48.65 ±8.09 | 2.623 (0.114) | 0.065 | 1.338 (0.225) | 0.034 | 0.054 (0.818) | 0.001 |
Control | 46.20 ±3.59 | 46.40 ±3.21 | |||||||
COWAT (phonemic fluency) | Experimental | 66.20 ±15.30 | 66.00 ±15.09 | 0.977 (0.329) | 0.025 | 0.007 (0.935) | 0.000 | 0.109 (0.774) | 0.003 |
Control | 66.45 ±5.71 | 66.35 ±5.67 |
Variables | Group | Pre-Test | Post-Test | RM-ANOVA (F-Value) | |||||
---|---|---|---|---|---|---|---|---|---|
Time (p-Value) | pη2 | Group (p-Value) | pη2 | T × G (p-Value) | pη2 | ||||
ECG (beats/min) | Experimental | 0.74 ±5.10 | 2.26 ±5.24 | 1.396 (0.245) | 0.035 | 0.407 (0.527) | 0.011 | 0.149 (0.702) | 0.004 |
Control | 0.42 ±4.59 | 1.19 ±3.33 | |||||||
EMG A (μV) | Experimental | 0.12 ±0.69 | 1.47 ±4.30 | 0.920 (0.344) | 0.024 | 0.154 (0.697) | 0.004 | 2.651 (0.112) | 0.065 |
Control | 0.73 ±1.73 | 0.39 ±1.71 | |||||||
EMG B (μV) | Experimental | 1.24 ±1.23 | 3.59 ±2.03 | 43.701 (0.000) *** | 0.535 | 0.687 (0.412) | 0.018 | 5.206 (0.028) * | 0.120 |
Control | 1.48 ±1.15 | 2.63 ±1.83 | |||||||
EMG C (μV) | Experimental | 1.34 ±1.21 | 3.72 ±1.53 | 34.912 (0.000) *** | 0.479 | 22.951 (0.000) *** | 0.377 | 14.295 (0.001) ** | 0.273 |
Control | 0.45 ±1.76 | 0.97 ±1.10 | |||||||
RESP (beats/min) | Experimental | −0.41 ±1.15 | −0.22 ±1.10 | 1.816 (0.186) | 0.046 | 0.854 (0.361) | 0.022 | 4.408 (0.042) * | 0.104 |
Control | 0.41 ±1.68 | −0.49 ±1.03 | |||||||
SC (μV) | Experimental | −0.79 ±1.47 | 1.01 ±2.89 | 3.318 (0.076) | 0.080 | 0.154 (0.697) | 0.004 | 4.101 (0.050) | 0.097 |
Control | 0.02 ±1.45 | −0.07 ±0.83 | |||||||
BVP (pulse/min) | Experimental | 1.42 ±3.58 | 5.81 ±16.08 | 2.50 (0.122) | 0.062 | 1.962 (0.169) | 0.049 | 0.023 (0.881) | 0.001 |
Control | −1.83 ±15.58 | 1.78 ±3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Kim, D.; Lee, M.; Han, K. Impact of Customized Content in 3D Virtual Reality Motionless Imagery Exercise through Avatar on Emotional Well-Being, Cognition, and Physiological Response. Appl. Sci. 2024, 14, 2724. https://doi.org/10.3390/app14072724
Lee M, Kim D, Lee M, Han K. Impact of Customized Content in 3D Virtual Reality Motionless Imagery Exercise through Avatar on Emotional Well-Being, Cognition, and Physiological Response. Applied Sciences. 2024; 14(7):2724. https://doi.org/10.3390/app14072724
Chicago/Turabian StyleLee, Myungchul, Donghyun Kim, Myungho Lee, and Kyunghun Han. 2024. "Impact of Customized Content in 3D Virtual Reality Motionless Imagery Exercise through Avatar on Emotional Well-Being, Cognition, and Physiological Response" Applied Sciences 14, no. 7: 2724. https://doi.org/10.3390/app14072724
APA StyleLee, M., Kim, D., Lee, M., & Han, K. (2024). Impact of Customized Content in 3D Virtual Reality Motionless Imagery Exercise through Avatar on Emotional Well-Being, Cognition, and Physiological Response. Applied Sciences, 14(7), 2724. https://doi.org/10.3390/app14072724