Experimental Research on Anisotropy Characteristics of Shale under Triaxial Incremental Cyclic Loading and Unloading
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Sample Preparation
2.2. Experimental Procedure
3. Basic Mechanical Behaviors of Anisotropic Shale under Incremental Triaxial Cyclic Loading and Unloading
3.1. Cyclic Stress–Strain Curve
3.2. Anisotropy of Compressive Strength
3.3. Anisotropy in the Elastic Modulus
3.4. Anisotropy of Deformation
3.5. Anisotropy in the Failure Pattern
4. Evolution of the Shale Characteristics of AE
4.1. Evolution Characteristics and Anisotropy of AE Ring Counts
4.2. Felicity Effect
4.3. Characteristics of AE b-Values
5. Anisotropy of Shale Energy Evolution
5.1. Anisotropy in the Total Energy Density U0
5.2. Anisotropy of the Energy Conversion
5.3. Evolution of Damage Factors
5.4. Elastic Energy Density Evolution Model
6. Weakening Mechanism of Shale Anisotropy
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.B.; Xie, H.; Luo, Y.; Zhang, R.; Li, R. Anisotropic energy based progressive damage model for laminated geomaterials. Appl. Math. Model. 2021, 93, 563–577. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Yao, B.W.; Fan, X.Y.; Nicholas, F.; Ma, T.S.; Chen, Y.F.; Chen, Y.F.; Zeng, F.T. A failure criterion for shale considering the anisotropy and hydration based on the shear slide failure model. Int. J. Min. Sci. Technol. 2023, 33, 447–462. [Google Scholar] [CrossRef]
- Gu, Y.T.; Wan, Q.; Yu, W.B.; Li, X.X.; Yu, Z.B. The effects of clay minerals and organic matter on nanoscale pores in Lower Paleozoic shale gas reservoirs, Guizhou, China. Acta Geochim. 2018, 37, 791–804. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lei, M.F.; Jia, C.J.; Zheng, K.Y.; Song, Y.T.; Shi, Y.B. Asymmetric large deformation of tunnel induced by groundwater in carbonaceous shale. Bull. Eng. Geol. Environ. 2022, 81, 260. [Google Scholar] [CrossRef]
- Scarpato, D.J. Constructability challenges for perimeter control blasting and slope development in shale and other “Weak” rocks. ISRM Congr. Rock Mech. 2015, 49, 653–659. [Google Scholar]
- Peng, K.; Zhou, J.Q.; Zou, Q.L.; Zhang, J.; Wu, F. Effects of stress lower limit during cyclic loading and unloading on deformation characteristics of sandstones. Constr. Build. Mater. 2019, 217, 202–215. [Google Scholar] [CrossRef]
- Liu, M.X.; Liu, E.L. Dynamic mechanical properties of artificial jointed rock samples subjected to cyclic triaxial loading. Int. J. Rock Mech. Min. 2017, 98, 54–66. [Google Scholar] [CrossRef]
- Ding, Z.W.; Jia, J.D.; Tang, Q.B.; Li, X.F. Mechanical Properties and Energy Damage Evolution Characteristics of Coal Under Cyclic Loading and Unloading. Rock Mech. Rock Eng. 2022, 55, 4765–4781. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.P.; Li, C.B. Anisotropic failure behavior and breakdown pressure interpretation of hydraulic fracturing experiments on shale. Int. J. Rock Mech. Min. 2021, 142, 104748. [Google Scholar] [CrossRef]
- Zheng, D.Z.; Ozbayoglu, E.; Miska, S.; Zhang, J.G. Experimental Study of Anisotropic Strength Properties of Shale. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023; pp. 25–28. [Google Scholar] [CrossRef]
- Jia, C.J.; Zhang, Q.; Lei, M.F.; Zheng, Y.N.; Huang, J.; Wang, L.C. Anisotropic properties of shale and its impact on underground structures: An experimental and numerical simulation. Bull. Eng. Geol. Environ. 2021, 80, 7731–7745. [Google Scholar] [CrossRef]
- Niandou, H.; Shao, J.F.; Henry, J.P.; Fourmaintraux, D. Laboratory investigation of the mechanical behavior of Tournemire shale. Int. J. Rock Mech. Min. 1997, 34, 3–16. [Google Scholar] [CrossRef]
- Cho, J.W.; Kim, H.; Jeon, S.; Min, K.B. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int. J. Rock Mech. Min. 2012, 50, 158–169. [Google Scholar] [CrossRef]
- Chen, H.G.; Di, Q.Y.; Zhang, W.X.; Li, Y.; Niu, J.R. Effects of bedding orientation on the failure pattern and acoustic emission activity of shale under uniaxial compression. Geomech. Geophys. Geo-Resour. 2021, 7, 20. [Google Scholar] [CrossRef]
- Hu, J.J.; Gao, C.; Xie, H.P.; Wang, J.; Li, M.H.; Li, C.B. Anisotropic characteristics of the energy index during the shale failure process under triaxial compression. J. Nat. Gas Sci. Eng. 2021, 95, 104219. [Google Scholar] [CrossRef]
- Kong, L.W.; Xie, H.P.; Gao, C.; Li, C.B. Experimental and theoretical research on the anisotropic deformation and energy evolution characteristics of shale under uniaxial cyclic loading and unloading. Int. J. Geomech. 2022, 22, 04022208. [Google Scholar] [CrossRef]
- Xie, Y.C.; Hou, M.Z.; Li, C.B. Anisotropic characteristics of acoustic emission and the corresponding multifractal spectrum during progressive failure of shale under cyclic loading. Int. J. Rock Mech. Min. 2023, 165, 105364. [Google Scholar] [CrossRef]
- Wei, Y.L.; Yang, C.H.; Guo, Y.T.; Liu, W.; Wang, L.; Xu, J.B. Experimental research on deformation and fracture characteristics of shale under cyclic loading. Chin. J. Geotech. Eng. 2015, 37, 2262–2271. [Google Scholar]
- Yin, P.F.; Yang, S.Q.; Gao, F.; Wen, L.T. Experiment and DEM simulation study on mechanical behaviors of shale under triaxial cyclic loading and unloading conditions. Geomech. Geophys. Geo-Resour. 2023, 9, 10. [Google Scholar] [CrossRef]
- Jiang, C.B.; Lu, T.Y.; Zhang, D.M.; Li, G.Z.; Duan, M.K.; Chen, Y.F.; Liu, C.S. An experimental study of deformation and fracture characteristics of shale with pore–water pressure and under triaxial cyclic loading. R. Soc. Open Sci. 2018, 5, 180670. [Google Scholar] [CrossRef]
- Jiang, C.B.; Wei, C.; Zhang, W.J.; Duan, K.M.; Chen, Y.F.; Yu, T. Research on deformation characteristics and energy evolution mechanisms of shale under constant amplitude cyclic loading. Chin. J. Rock Mech. Eng. 2020, 39, 2416–2428. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wu, G.; Huang, T.Z.; Liu, Y. Variation of energy and criteria for strength failure of shale under triaxial cyclic loading. Chin. J. Rock Mech. Eng. 2020, 39, 2416–2428. [Google Scholar] [CrossRef]
- Meng, Q.B.; Wang, C.K.; Huang, B.X.; Pu, H.; Zhang, Z.Z.; Sun, W.; Wang, J. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions. Chin. J. Rock Mech. Eng. 2020, 39, 2047–2059. [Google Scholar] [CrossRef]
- Chen, T.Y.; Feng, X.T.; Zhang, X.W.; Chao, W.D.; Fu, C.J. Experimental study on mechanical and anisotropic properties of black shale. Chin. J. Rock Mech. Eng. 2014, 33, 1772–1779. [Google Scholar] [CrossRef]
- Wang, M.M.; Shao, X.Z.; Zhu, L.X.; Zhou, Z.J. Use of acoustic emission to determine the effects of bedding and stress paths on micro–cracking evolution of anisotropic shale under cyclic loading tests. Environ. Earth Sci. 2021, 80, 476. [Google Scholar] [CrossRef]
- Song, Y.Q.; Ma, H.F.; Liu, J.C.; Li, X.S.; Zheng, J.J.; Fu, H. Experimental investigation on the damage characteristics of freezethaw limestone by the uniaxial compression and acoustic emission monitoring tests. Chin. J. Rock Mech. Eng. 2022, 41, 2603–2614. [Google Scholar] [CrossRef]
- Dahmene, F.; Yaacoubi, S.; Mountassir, E.L.; Langlois, C.B.; Bardoux, O.C. Towards efficient acoustic emission testing of COPV, without Felicity ratio criterion, during hydrogen–filling. Int. J. Hydrogen Energy 2016, 41, 1359–1368. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seism. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.L. Conversion of strain energy in triaxial unloading tests on marble. Int. J. Rock Mech. Min. 2014, 66, 160–168. [Google Scholar] [CrossRef]
- Xie, H.P.; Peng, R.D.; Ju, Y. Energy dissipation of rock deformation and fracture. Chin. J. Rock Mech. Eng. 2004, 21, 3565–3570. [Google Scholar] [CrossRef]
- Zhang, L.M.; Cong, Y.; Meng, F.Z.; Wang, Z.Q.; Zhang, P.; Gao, S. Energy evolution analysis and failure criteria for rock under different stress paths. Acta Geotech. 2021, 16, 569–580. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Gao, F. Research on nonlinear characteristics of rock energy evolution under uniaxial compression. Chin. J. Rock Mech. Eng. 2012, 31, 1198–1207. [Google Scholar] [CrossRef]
Confining Pressure/MPa | Shale Failure Mode | |||
---|---|---|---|---|
θ = 0° | θ = 60° | |||
Monotonic Loading | Cyclic Loading and Unloading | Monotonic Loading | Cyclic Loading and Unloading | |
10 | ||||
20 | ||||
30 |
Bedding Dip Angle θ/° | Confining Pressure/MPa | Triaxial Monotonic Loading | Triaxial Incremental Cycle Loading and Unloading | ||
---|---|---|---|---|---|
Destruction Mode | Main Control Factor | Destruction Mode | Main Control Factor | ||
0 | 10 | Tensioning failure through bedding planes | Matrix body | Tensioning failure through bedding planes | Matrix body |
20 | Mixed failure of tension and shear across bedding planes | Matrix body | Shear failure | Matrix body | |
30 | Conjugate shear failure | Matrix body | Conjugate shear failure | Matrix body | |
60 | 10 | Shear slip failure along bedding planes | Bedding plane | Shear failure through bedding planes | Matrix and bedding planes |
20 | Shear failure along bedding planes and through bedding planes | Matrix and bedding planes | Shear failure through bedding planes | Matrix and bedding planes | |
30 | Shear slip failure along bedding planes | Bedding plane | Shear failure through bedding planes | Matrix and bedding planes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Yan, Q.; Zhang, S.; Cai, F. Experimental Research on Anisotropy Characteristics of Shale under Triaxial Incremental Cyclic Loading and Unloading. Appl. Sci. 2024, 14, 2602. https://doi.org/10.3390/app14062602
Cao Y, Yan Q, Zhang S, Cai F. Experimental Research on Anisotropy Characteristics of Shale under Triaxial Incremental Cyclic Loading and Unloading. Applied Sciences. 2024; 14(6):2602. https://doi.org/10.3390/app14062602
Chicago/Turabian StyleCao, Yangbing, Qiang Yan, Sui Zhang, and Fuming Cai. 2024. "Experimental Research on Anisotropy Characteristics of Shale under Triaxial Incremental Cyclic Loading and Unloading" Applied Sciences 14, no. 6: 2602. https://doi.org/10.3390/app14062602
APA StyleCao, Y., Yan, Q., Zhang, S., & Cai, F. (2024). Experimental Research on Anisotropy Characteristics of Shale under Triaxial Incremental Cyclic Loading and Unloading. Applied Sciences, 14(6), 2602. https://doi.org/10.3390/app14062602