Development and Characterization of Pectin-Based Antimicrobial Packaging Films Containing Nanoemulsified Trans-Cinnamaldehyde
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nanoemulsion of Trans-Cinnamaldehyde (NE)
2.3. Preparation of Films
2.3.1. Preparation of the Film-Forming Solution
2.3.2. Fabrication of Films
2.4. Characterization of the Nanoemulsion
2.4.1. Size Distribution
2.4.2. Zeta Potential (ζ)
2.5. Films Characterization
2.5.1. Film Thickness
2.5.2. Opacity and Light Transmission of Films
2.5.3. Color Measurements
2.5.4. Water Activity
2.5.5. Mechanical Properties
2.5.6. Scanning Electron Microscopy
2.5.7. Differential Scanning Calorimetry Analysis (DSC)
2.5.8. Thermogravimetric Analysis (TGA)
2.5.9. Attenuated Total Reflectance-Fourier-Transform Infrared (ATR-FTIR) Spectroscopy
2.6. Evaluation of the Antimicrobial Activity of Films
2.7. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and Zeta Potential of Nanoemulsion
3.2. Thickness, Opacity and Light Transmittance of Films
3.3. Water Activity
3.4. Color Measurements
3.5. Mechanical Properties
3.6. Scanning Electron Microscopy
3.7. ATR-FTIR Analysis
3.8. Thermogravimetric Analysis (TGA)
3.9. Differential Scanning Calorimetry (DSC)
3.10. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial Edible Films in Food Packaging: Current Scenario and Recent Nanotechnological Advancements—A Review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Haghighi, H.; Gullo, M.; La China, S.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Characterization of Bio-Nanocomposite Films Based on Gelatin/Polyvinyl Alcohol Blend Reinforced with Bacterial Cellulose Nanowhiskers for Food Packaging Applications. Food Hydrocoll. 2021, 113, 106454. [Google Scholar] [CrossRef]
- Tambawala, H.; Batra, S.; Shirapure, Y.; More, A.P. Curcumin- A Bio-Based Precursor for Smart and Active Food Packaging Systems: A Review. J. Polym. Environ. 2022, 30, 2177–2208. [Google Scholar] [CrossRef]
- Feig, V.R.; Tran, H.; Bao, Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 2018, 4, 337–348. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Lee, B.-H.; Lee, H.; Lee, S.; Bae, I.Y.; Lee, H.G.; Fishman, M.L.; Chau, H.K.; Savary, B.J.; Hotchkiss, A.T. Structural Characteristics of Pumpkin Pectin Extracted by Microwave Heating. J. Food Sci. 2012, 77, C1169–C1173. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.Y.; Arif, Z.U. Novel Biopolymer-Based Sustainable Composites for Food Packaging Applications: A Narrative Review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and Sustainable Biobased Materials: An Assessment on Biofibers, Biofilms, Biopolymers and Biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Meindrawan, B.; Suyatma, N.E.; Wardana, A.A.; Pamela, V.Y. Nanocomposite Coating Based on Carrageenan and ZnO Nanoparticles to Maintain the Storage Quality of Mango. Food Packag. Shelf Life 2018, 18, 140–146. [Google Scholar] [CrossRef]
- Thomas, S.; Gopi, S.; Amalraj, A. Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources, to Functional Products; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-819259-7. [Google Scholar]
- Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. Materials 2020, 13, 673. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Extraction, Purification and Characterization of Pectin from Alternative Sources with Potential Technological Applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef]
- Christiaens, S.; Uwibambe, D.; Uyttebroek, M.; Droogenbroeck, B.; van Loey, A.; Hendrickx, M. Pectin Characterisation in Vegetable Waste Streams: A Starting Point for Waste Valorisation in the Food Industry. LWT Food Sci. Technol. 2015, 61, 275–282. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Łopusiewicz, Ł.; Biswas, D.; Chandel, V.; Rhim, J.-W. Recent Progress in Pectin Extraction, Characterization, and Pectin-Based Films for Active Food Packaging Applications: A Review. Int. J. Biol. Macromol. 2023, 239, 124248. [Google Scholar] [CrossRef]
- Moslemi, M. Reviewing the Recent Advances in Application of Pectin for Technical and Health Promotion Purposes: From Laboratory to Market. Carbohydr. Polym. 2021, 254, 117324. [Google Scholar] [CrossRef]
- Sánchez Aldana, D.; Andrade-Ochoa, S.; Aguilar, C.N.; Contreras-Esquivel, J.C.; Nevárez-Moorillón, G.V. Antibacterial Activity of Pectic-Based Edible Films Incorporated with Mexican Lime Essential Oil. Food Control 2015, 50, 907–912. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q.; Hu, Y. Pectin-Based Active Packaging: A Critical Review on Preparation, Physical Properties and Novel Application in Food Preservation. Trends Food Sci. Technol. 2021, 118, 167–178. [Google Scholar] [CrossRef]
- Mungure, T.E.; Roohinejad, S.; Bekhit, A.E.-D.; Greiner, R.; Mallikarjunan, K. Potential Application of Pectin for the Stabilization of Nanoemulsions. Curr. Opin. Food Sci. 2018, 19, 72–76. [Google Scholar] [CrossRef]
- Ravishankar, S.; Jaroni, D.; Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M. Inactivation of Listeria Monocytogenes on Ham and Bologna Using Pectin-Based Apple, Carrot, and Hibiscus Edible Films Containing Carvacrol and Cinnamaldehyde. J. Food Sci. 2012, 77, M377–M382. [Google Scholar] [CrossRef] [PubMed]
- Asdagh, A.; Pirsa, S. Bacterial and Oxidative Control of Local Butter with Smart/Active Film Based on Pectin/Nanoclay/Carum Copticum Essential Oils/β-Carotene. Int. J. Biol. Macromol. 2020, 165, 156–168. [Google Scholar] [CrossRef]
- Nisar, T.; Yang, X.; Alim, A.; Iqbal, M.; Wang, Z.-C.; Guo, Y. Physicochemical Responses and Microbiological Changes of Bream (Megalobrama Ambycephala) to Pectin Based Coatings Enriched with Clove Essential Oil during Refrigeration. Int. J. Biol. Macromol. 2019, 124, 1156–1166. [Google Scholar] [CrossRef]
- Chandrika, R.; Saraswathi, K.J.T.; Mallavarapu, G.R. Constituents of the Essential Oils of the Leaf and Root of Eryngium foetidum L. from Two Locations in India. J. Essent. Oil Bear. Plants 2015, 18, 349–358. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory Effects of Selected Plant Essential Oils on the Growth of Four Pathogenic Bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus Aureus and Listeria Monocytogenes. Food Control 2007, 18, 414–420. [Google Scholar] [CrossRef]
- Johny, A.K.; Darre, M.J.; Hoagland, T.A.; Schreiber, D.T.; Donoghue, A.M.; Donoghue, D.J.; Venkitanarayanan, K. Antibacterial Effect of Trans-Cinnamaldehyde on Salmonella Enteritidis and Campylobacter Jejuni in Chicken Drinking Water. J. Appl. Poult. Res. 2008, 17, 490–497. [Google Scholar] [CrossRef]
- CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.515&SearchTerm=cinnamaldehyde (accessed on 6 February 2024).
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal Activities of Plant Essential Oils and Some of Their Isolated Constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Bowles, B.L.; Sackitey, S.K.; Williams, A.C. Inhibitory Effects of Flavor Compounds on Staphylococcus aureus Wrrc B1241. J. Food Saf. 1995, 15, 337–347. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and Characterization of Pectin Films Activated by Nanoemulsion and Pickering Emulsion Stabilized Marjoram (Origanum majorana L.) Essential Oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; de Soares, N.F.F.; Mattoso, L.H.C. Antimicrobial and Physical-Mechanical Properties of Pectin/Papaya Puree/Cinnamaldehyde Nanoemulsion Edible Composite Films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Pérez-Córdoba, L.J.; Norton, I.T.; Batchelor, H.K.; Gkatzionis, K.; Spyropoulos, F.; Sobral, P.J.A. Physico-Chemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Based Films Loaded with Nanoemulsions Encapsulating Active Compounds. Food Hydrocoll. 2018, 79, 544–559. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol Nanoemulsions Incorporated in Quinoa Protein/Chitosan Edible Films; Antifungal Effect in Cherry Tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef]
- Jantrawut, P.; Boonsermsukcharoen, K.; Thipnan, K.; Chaiwarit, T.; Hwang, K.-M.; Park, E.-S. Enhancement of Antibacterial Activity of Orange Oil in Pectin Thin Film by Microemulsion. Nanomaterials 2018, 8, 545. [Google Scholar] [CrossRef]
- Norcino, L.B.; Mendes, J.F.; Natarelli, C.V.L.; Manrich, A.; Oliveira, J.E.; Mattoso, L.H.C. Pectin Films Loaded with Copaiba Oil Nanoemulsions for Potential Use as Bio-Based Active Packaging. Food Hydrocoll. 2020, 106, 105862. [Google Scholar] [CrossRef]
- Tajik, S.; Maghsoudlou, Y.; Khodaiyan, F.; Jafari, S.M.; Ghasemlou, M.; Aalami, M. Soluble Soybean Polysaccharide: A New Carbohydrate to Make a Biodegradable Film for Sustainable Green Packaging. Carbohydr. Polym. 2013, 97, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/d0882-18.html (accessed on 6 February 2024).
- Battery Materials Lab Packages-TA Instruments. Available online: https://www.tainstruments.com/ (accessed on 13 February 2024).
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior Antibacterial Activity of Nanoemulsion of Thymus Daenensis Essential Oil against E. Coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Mudalige, T.; Qu, H.; Van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Chapter 11—Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications; López Rubio, A., Fabra Rovira, M.J., Martínez Sanz, M., Gómez-Mascaraque, L.G., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 313–353. ISBN 978-0-12-814130-4. [Google Scholar]
- ISO 22412:2017; Particle Size Analysis. Dynamic Light Scattering (DLS). ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/65410.html (accessed on 6 February 2024).
- Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of Nanoemulsion-Based Delivery Systems of Natural Antimicrobials: Effect of the Emulsifier. J. Biotechnol. 2012, 159, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.; Larsson, M.; Hill, A. Suspension Stability; Why Particle Size, Zeta Potential and Rheology Are Important. Annu. Trans. Nord. Rheol. Soc. 2012, 20, 209–214. [Google Scholar]
- Yang, Q.-Q.; Sui, Z.; Lu, W.; Corke, H. Soybean Lecithin-Stabilized Oil-in-Water (O/W) Emulsions Increase the Stability and In Vitro Bioaccessibility of Bioactive Nutrients. Food Chem. 2021, 338, 128071. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.P.; López, J.; Ferrándiz, S.; Peltzer, M.A. Characterization of PLA-Limonene Blends for Food Packaging Applications. Polym. Test. 2013, 32, 760–768. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H. Physical Properties of Edible Emulsified Films Based on Carboxymethyl Cellulose and Oleic Acid. Int. J. Biol. Macromol. 2011, 48, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.; Niakousari, M.; Golmakani, M.T. Fabrication and Characterization of Pectin Films Incorporated with Clove Essential Oil Emulsions Stabilized by Modified Sodium Caseinate. Food Packag. Shelf Life 2022, 32, 100835. [Google Scholar] [CrossRef]
- Fasihi, H.; Fazilati, M.; Hashemi, M.; Noshirvani, N. Novel Carboxymethyl Cellulose-Polyvinyl Alcohol Blend Films Stabilized by Pickering Emulsion Incorporation Method. Carbohydr. Polym. 2017, 167, 79–89. [Google Scholar] [CrossRef]
- Atarés, L.; Bonilla, J.; Chiralt, A. Characterization of Sodium Caseinate-Based Edible Films Incorporated with Cinnamon or Ginger Essential Oils. J. Food Eng. 2010, 100, 678–687. [Google Scholar] [CrossRef]
- Sperber, W.H. Influence of Water Activity on Foodborne Bacteria—A Review1. J. Food Prot. 1983, 46, 142–150. [Google Scholar] [CrossRef]
- Rodríguez, G.M.; Sibaja, J.C.; Espitia, P.J.P.; Otoni, C.G. Antioxidant Active Packaging Based on Papaya Edible Films Incorporated with Moringa oleifera and Ascorbic Acid for Food Preservation. Food Hydrocoll. 2020, 103, 105630. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Morales, N.J.; Pérez, E.; Tapia, M.S.; Famá, L. Physico-Chemical Properties of Edible Films Derived from Native and Phosphated Cush-Cush Yam and Cassava starches. Food Packag. Shelf Life 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Aragón-Gutiérrez, A.; Heras-Mozos, R.; Gallur, M.; López, D.; Gavara, R.; Hernández-Muñoz, P. Hot-Melt-Extruded Active Films Prepared from EVOH/Trans-Cinnamaldehyde Blends Intended for Food Packaging Applications. Foods 2021, 10, 1591. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, P.C.; Ramesh, M.N.; Tharanathan, R.N. Effect of Plasticizers and Fatty Acids on Mechanical and Permeability Characteristics of Chitosan Films. Food Hydrocoll. 2007, 21, 1113–1122. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and Evaluation of a Novel Biodegradable Film Made from Chitosan and Cinnamon Essential Oil with Low Affinity toward Water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Khachani, R.; El Galiou, O.; Aitboulahsen, M.; Bakrim, H.; Arakrak, A.; Laglaoui, A.; Hassani Zerrouk, M. Stability of Antimicrobial, Antioxidant, and Functional Properties of Pectin-Based Film Incorporated with Thymus Capitatus and Cinnamomum Verum Essential Oils. J. Food Saf. 2024, 44, e13097. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical Properties of Edible Chitosan Films Containing Bergamot Essential Oil and Their Inhibitory Action on Penicillium Italicum. Carbohydr. Polym. 2010, 82, 277–283. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of Essential Oils on Properties of Film Forming Emulsions and Films Based on Hydroxypropylmethylcellulose and Chitosan. J. Food Eng. 2011, 105, 246–253. [Google Scholar] [CrossRef]
- Nisar, T.; Wang, Z.-C.; Yang, X.; Tian, Y.; Iqbal, M.; Guo, Y. Characterization of Citrus Pectin Films Integrated with Clove Bud Essential Oil: Physical, Thermal, Barrier, Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2018, 106, 670–680. [Google Scholar] [CrossRef]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of Chitosan–Oleic Acid Composite Films. Food Hydrocoll. 2009, 23, 536–547. [Google Scholar] [CrossRef]
- Shivangi, S.; Dorairaj, D.; Negi, P.S.; Shetty, N.P. Development and Characterisation of a Pectin-Based Edible Film That Contains Mulberry Leaf Extract and Its Bio-Active Components. Food Hydrocoll. 2021, 121, 107046. [Google Scholar] [CrossRef]
- Lei, Y.; Wu, H.; Jiao, C.; Jiang, Y.; Liu, R.; Xiao, D.; Lu, J.; Zhang, Z.; Shen, G.; Li, S. Investigation of the Structural and Physical Properties, Antioxidant and Antimicrobial Activity of Pectin-Konjac Glucomannan Composite Edible Films Incorporated with Tea Polyphenol. Food Hydrocoll. 2019, 94, 128–135. [Google Scholar] [CrossRef]
- Pasini Cabello, S.D.; Takara, E.A.; Marchese, J.; Ochoa, N.A. Influence of Plasticizers in Pectin Films: Microstructural Changes. Mater. Chem. Phys. 2015, 162, 491–497. [Google Scholar] [CrossRef]
- Wathoni, N.; Yuan Shan, C.; Yi Shan, W.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and Antioxidant Activity of Pectin from Indonesian Mangosteen (Garcinia mangostana L.) Rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Preparation of Pectin/Agar-Based Functional Films Integrated with Zinc Sulfide Nano Petals for Active Packaging Applications. Colloids Surf. B Biointerfaces 2021, 207, 111999. [Google Scholar] [CrossRef] [PubMed]
- Manrique, G.D.; Lajolo, F.M. FT-IR Spectroscopy as a Tool for Measuring Degree of Methyl Esterification in Pectins Isolated from Ripening Papaya Fruit. Postharvest Biol. Technol. 2002, 25, 99–107. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier Transform-Infrared Spectroscopy to Edible Oils. Anal. Chim. Acta 2006, 573–574, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Rajisha, K.R.; Deepa, B.; Pothan, L.A.; Thomas, S. 9—Thermomechanical and Spectroscopic Characterization of Natural Fibre Composites. In Interface Engineering of Natural Fibre Composites for Maximum Performance; Zafeiropoulos, N.E., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2011; pp. 241–274. ISBN 978-1-84569-742-6. [Google Scholar]
- Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of Pectin from Grapefruit Peel: A Comparison of Ultrasound-Assisted and Conventional Heating Extractions. Food Hydrocoll. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Chauhan, K.; Naz, A.; Nayeem, M. Antimicrobial and Antioxidant Activity of Impregnated Pectin and Alginate Based Bio Composite Packaging Material for Fresh Produce Safety. Pharma Innov. 2021, 10, 262–272. [Google Scholar] [CrossRef]
- Gurunathan, S. Biologically Synthesized Silver Nanoparticles Enhances Antibiotic Activity against Gram-Negative Bacteria. J. Ind. Eng. Chem. 2015, 29, 217–226. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C.A. The Effect of Lemon, Orange and Bergamot Essential Oils and Their Components on the Survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in Vitro and in Food Systems. J. Appl. Microbiol. 2006, 101, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
Sample Names | Composition of the Film | TC Con. (% w/w) |
---|---|---|
Pectin (control) | Pectin film | 0% |
P/NE:1 | Pectin mixed with nanoemulsion of trans-cinnamaldehyde at the ratio of 1:1(Pectin:NE) | 5.00% |
P/NE:2 | Pectin mixed with nanoemulsion of trans-cinnamaldehyde at the ratio of 2:1 (Pectin:NE) | 3.33% |
P/NE:3 | Pectin mixed with nanoemulsion of trans-cinnamaldehyde at the ratio of 3:1 (Pectin:NE) | 2.50% |
P/NE:4 | Pectin imixed with nanoemulsion of trans-cinnamaldehyde at the ratio of 4:1 (Pectin:NE) | 2.00% |
Sample Names | Thickness (μm) | Opacity (A × mm−1) | T 280 nm | T 600 nm | Water Activity |
---|---|---|---|---|---|
Pectin(control) | 102 ± 2 a | 0.73 ± 0.01 e | 6.49 ± 0.89 a | 83.83 ± 0.38 a | 0.43 ± 0.01 e |
P/NE:1 | 63 ± 1e | 1.42 ± 0.04 c | 0 b | 11.51 ± 0.82 b | 0.58 ± 0.03 a |
P/NE:2 | 72 ± 2 d | 2.37 ± 0.07 a | 0 b | 2.15 ± 0.25 e | 0.52 ± 0.02 b |
P/NE:3 | 80 ± 2 c | 1.67 ± 0.05 b | 0 b | 4.58 ± 0.50 d | 0.52 ± 0.01 c |
P/NE:4 | 91 ± 3 b | 1.21 ± 0.03 d | 0 b | 7.93 ± 0.46 c | 0.50 ± 0.04 d |
Sample Names | L | a | b | ΔE | WI | YI |
---|---|---|---|---|---|---|
Pectin (control) | 90.22 ± 0.17 a | 0.79 ± 0.19 a | 4.48 ± 0.13 e | 0.29 ± 0,02 e | 89.12 ± 0.22 a | 7.10 ± 0.31 e |
P/NE:1 | 81.52 ± 0.61 d | −2.75 ± 0.28 b | 55.11 ± 1.58 a | 51.47 ± 1.54 a | 41.79 ± 1.46 e | 96.59 ± 2.65 a |
P/NE:2 | 83.53 ± 0.84 c | −3.19 ± 0.30 bc | 50.43 ± 1.38 b | 46.44 ± 1.23 b | 47.15 ± 1.06 d | 85.17 ± 1.57 b |
P/NE:3 | 84.58 ± 0.31 c | −3.78 ± 0.97 c | 45.34 ± 4.21 c | 41.64 ± 4.11 c | 51.58 ± 3.88 c | 77.54 ± 6.97 c |
P/NE:4 | 87.29 ± 0.56 b | −4.88 ± 0.09 d | 36.79 ± 1.89 d | 32.91 ± 1.86 d | 60.76 ± 1.81 b | 60.21 ± 3.19 d |
Samples | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
Pectin (control) | 10.37 ± 1.04 a | 7.06 ± 0.42 d | 317.59 ± 5.76 a |
P/NE:1 | 3.32 ± 0.48 d | 4.49 ± 0.53 e | 100.65 ± 9.93 d |
P/NE:2 | 5.10 ± 0.11 c | 7.47 ± 0.22 c | 126.90 ± 11.08 cd |
P/NE:3 | 7.52 ± 0.21 b | 8.62 ± 0,05 b | 192.21 ± 18.37 bc |
P/NE:4 | 9.03 ± 0.80 ab | 8.77 ± 1.46 a | 254.70 ± 19.80 ab |
DSC | ATG (Δm) | DTG | ||||
---|---|---|---|---|---|---|
Film Samples | Tg °C | 20–180 °C | 180–260 °C | 260–600 °C | 20–600 °C | Tmax °C Degradation |
Pectin (control) | 152.94 | 9.05 ± 0.39 b | 41.63 ± 1.23 a | 19.67 ± 1.06 c | 70.36 ± 0.22 b | 234.83 ± 0.28 b |
P/NE:1 | 13.72 | 12.50 ± 1.01 a | 39.18 ± 0.62 a | 41.65± 2.73 a | 92.33 ± 1.10 a | 239.16 ± 0.76 a |
P/NE:2 | 40.90 | 10.71 ± 0.61 ab | 39.25 ± 0.95 a | 40.99 ± 4.17 a | 91.95 ± 2.31 a | 239 ± 1a |
P/NE:3 | 54 | 9.56 ± 0.59 b | 39.07 ± 1.04 a | 27.01 ± 3.66 b | 75.64 ± 4.15 b | 237 ± 0.30 ab |
P/NE:4 | 57 | 9.45 ± 0.69 b | 40.07 ± 1.37 a | 21.52 ± 0.43 bc | 71.14 ± 0.24 b | 236 ± 0.43 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghi, F.; Ghnimi, S.; Agusti, G.; Dumas, E.; Gharsallaoui, A. Development and Characterization of Pectin-Based Antimicrobial Packaging Films Containing Nanoemulsified Trans-Cinnamaldehyde. Appl. Sci. 2024, 14, 2256. https://doi.org/10.3390/app14062256
Baghi F, Ghnimi S, Agusti G, Dumas E, Gharsallaoui A. Development and Characterization of Pectin-Based Antimicrobial Packaging Films Containing Nanoemulsified Trans-Cinnamaldehyde. Applied Sciences. 2024; 14(6):2256. https://doi.org/10.3390/app14062256
Chicago/Turabian StyleBaghi, Fatemeh, Sami Ghnimi, Géraldine Agusti, Emilie Dumas, and Adem Gharsallaoui. 2024. "Development and Characterization of Pectin-Based Antimicrobial Packaging Films Containing Nanoemulsified Trans-Cinnamaldehyde" Applied Sciences 14, no. 6: 2256. https://doi.org/10.3390/app14062256
APA StyleBaghi, F., Ghnimi, S., Agusti, G., Dumas, E., & Gharsallaoui, A. (2024). Development and Characterization of Pectin-Based Antimicrobial Packaging Films Containing Nanoemulsified Trans-Cinnamaldehyde. Applied Sciences, 14(6), 2256. https://doi.org/10.3390/app14062256