Bat Hibernation: In Groups or Individually?
Abstract
:1. Introduction
2. Methods
- -
- Gas parameter meter—for humidity (Rh), range of 0–100%, resolution of indications 0.1% with an uncertainty of indications ±1.5%; for temperature (Ta), range of −50–200 °C, resolution of indications 0.1 °C with an uncertainty of ±0.1 °C; and for atmospheric pressure (p), range of 500–1500 hPa, resolution of indications 1 hPa with an uncertainty of ±2 hPa;
- -
- Thermo-anemometer (portable digital air speed (v) and temperature meter)—the measurement range was 0.01–20 m/s, with an uncertainty of indications ±0.01 m/s.
Statistical Methods
3. Results
4. Discussion
- A negative value of β4 indicates a decrease in the bats’ group size with an increasing product of T and Rh;
- A positive value of β5 indicates an increase in the bats’ group size with an increasing product of T and v;
- A negative value of β6 indicates a decrease in the bats’ group size with an increasing product of v and Rh;
- A negative value of β7 indicates a decrease in the bats’ group size with an increasing product of T, v, and Rh.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyles, J.G.; Storm, J.J.; Brack, V., Jr. Thermal benefits of clustering during hibernation: A field test of competing hypotheses on Myotis sodalis. Funct. Ecol. 2008, 22, 632–636. [Google Scholar] [CrossRef]
- Ransome, R.D. The Natural History of Hibernating Bats; Christopher Helm: London, UK, 1990. [Google Scholar]
- Boratyński, J.S.; Willis, C.K.R.; Jefimow, M.; Wojciechowski, M.S. Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp. Biochem. Physiol. Part A 2015, 179, 125–132. [Google Scholar] [CrossRef]
- McGuire, L.P.; Johnson, E.M.; Frick, W.F.; Boyles, J.G. Temperature alone is insufficient to understand hibernation energetics. J. Exp. Biol. 2021, 224, jeb239772. [Google Scholar] [CrossRef]
- Kunz, T.H.; Linda, F.L. Ecology of cavity and foliage roosting bats. In Bat Ecology; Kunz, T.H., Fenton, M.B., Eds.; The University of Chicago Press: Chicago, IL, USA, 2003; pp. 3–89. [Google Scholar]
- Geiser, F. Ecological Physiology of Daily Torpor and Hibernation; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Haase, C.G.; Fuller, N.W.; Dzal, Y.A.; Hranac, C.R.; Hayman, D.T.S.; Lausen, C.L.; Silas, K.A.; Olson, S.H.; Plowright, R.K. Body mass and hibernation microclimate may predict bat susceptibility to white-nose syndrome. Ecol. Evol. 2021, 11, 506–515. [Google Scholar] [CrossRef]
- Smirnov, D.G.; Kurmaeva, N.M.; Vekhnik, V.P. Population dynamics and spatial distribution of wintering bats (Chiroptera, Vespertilionidae) in one of the galleries of Samarskaya Luka. Plecotus 1999, 2, 67–78. (In Russian) [Google Scholar]
- Tomilenko, A.A. Wintering of bats (Vespertilionidae) in the Novosibirsk region. Plecotus 2002, 99–106. (In Russian) [Google Scholar]
- Kłys, G. Multifactor Analysis of Refugioclimate in Places of Hibernation of Chosen Bat Species; T. 8 Studia Chiropterologica; Chiropterological Information Center, Institute of Animal Systematics and Evolution, Polish Academy of Sciences: Krakow, Poland, 2013. [Google Scholar]
- Betke, M.; Hirsch, D.E.; Makris, N.C.; McCracken, G.F.; Procopio, M.; Hristov, N.I.; Teng, S.; Bacchi, A.; Reichard, J.; Horns, J.W.; et al. Termal imaging reveals significantly smaller Brazilian free-tailed bat colonie than previously estimated. J. Mammal. 2008, 89, 18–24. [Google Scholar] [CrossRef]
- Orlova, N.G.; Dmitriev, V.E.; Rybakov, S.A. Conditions and places of wintering of bats on the eastern slope of the Kuznetsk Alatau. In Ecology of Terrestrial Vertebrates of Siberia; TGU: Tomsk, Russia, 1983; pp. 53–59. (In Russian) [Google Scholar]
- Thomas, D.W. The physiological ecology of hibernation in vespertilionid Bats. Symp. Zool. Soc. Lond. 1995, 67, 233–244. [Google Scholar]
- Janicki, B.; Cygan–Szczegielniak, D. Hibernacja zwierząt. Med. Weter. 2006, 4, 366–369. [Google Scholar]
- Kłys, G.; Makuchowska-Fryc, J. Wintering Conditions and Heat Loss during Hibernation in the Brown Long-Eared Bat. Appl. Sci. 2024, 14, 716. [Google Scholar] [CrossRef]
- Nelson, R.A. Protein and FAT metabolizm, in hibernating bears. Fed. Proc. 1980, 39, 2955–2958. [Google Scholar]
- Storey, K.B.; Storey, J.M. Facultative metabolic rate depression: Molecular regulation and biochemical adaptation in anaerobiosis, hibernation and aestivation. Q. Rev. Biol. 1990, 65, 145–174. [Google Scholar] [CrossRef]
- Hoffman, R.A. Speculations on the regulation of hibernation. Ann. Acad. Sci. Fenn. Set A 4 1964, 71, 199–216. [Google Scholar]
- Lyman, C.P.; Willis, J.S.; Malan, A.; Wang, L.H.C. Hibernation and Torpor in Mammals and Birds; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Wang, L.C.H. Mammalian hibernation. In The Effects of Low Temperature on Biological Systems; Grout, B.W.W., Morris, G.J., Eds.; Edward Arnold: London, UK, 1987; pp. 349–386. [Google Scholar]
- French, A.R. The patterns of mammalian hibernation. Am. Sci. 1988, 76, 569–575. [Google Scholar]
- Geiser, F.; Ruf, T. Hibernation versus daily torpor in mammals and birds: Physiological variables and classification of torpor patterns. Physiol. Zool. 1995, 68, 935–966. [Google Scholar] [CrossRef]
- Fritze, M.; Pham, T.L.H.; Zaspel, I. Effekt des Bodenbakteriums Pseudomonas veronii-like PAZ1 auf das Wachstum des White-Nose Erregers Geomyces destructans in Antagonisten-Tests. Nyctalus 2012, 17, 104–107. [Google Scholar]
- Hranac, C.R.; Haase, C.G.; Fuller, N.W.; McClure, M.L.; Marshall, J.C.; Lausen, C.L.; McGuire, L.P.; Olson, S.H.; Hayman, D.T. What is winter? Modeling spatial variation in bat host traits and hibernation and their implications for overwintering energetics. Ecol. Evol. 2021, 11, 11604–11614. [Google Scholar] [CrossRef] [PubMed]
- Bachorec, E.; Bartonicka, T.; Heger, T.; Pikula, J.; Zukal, J. Cold arousal—A mechanism used by hibernating bats to reduce the energetic costs of disturbance. J. Therm. Biol. 2021, 101, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Martínková, N.; Baird, S.J.E.; Kána, V.; Zima, J. Bat population recoveries give insight into clustering strategies during hibernation. Front. Zool. 2020, 17, 26. [Google Scholar] [CrossRef]
- Gaisler, J. Remarks on the thermopreferendum of Palearctic bats in their Natural Habitats. Bijdr. Dierkd. 1970, 40, 33–36. [Google Scholar] [CrossRef]
- Bauerova, Z.; Zima, J. Seasonal changes in visits to a cave by bats. Folia Zool. 1988, 37, 97–111. [Google Scholar]
- Boyles, J.G.; Johnson, J.S.; Thomas, A.B.; Lilley, M. Optimal hibernation thery. Mammal Rev. 2019, 50, 91–100. [Google Scholar] [CrossRef]
- Harmata, W. The thermopreferendum of some species of bats (Chiroptera). Acta Theriol. 1969, 14, 49–62. [Google Scholar] [CrossRef]
- Kunz, T.H.; Anthony, E.L.P. Age estimation and post-natal growth in the bat Myotis lucifugus. J. Mammal. 1982, 63, 23–32. [Google Scholar] [CrossRef]
- Nagel, A.; Nagel, R. How do bats choose optimal temperatures for hibernation? Comp. Biochem. Physiol. Part A Physiol. 1991, 99, 323–326. [Google Scholar] [CrossRef]
- Visnovska, Z. Spatial distribution of hibernating bats (Chiroptera) in relation to climatic conditions in the Demanovska ice cave (Slovakia). In Proceedings of the 2nd International Workshop on Ice Caves, Demanovska Dolina, Slovakia, 8–12 May 2006; pp. 87–97. [Google Scholar]
- Boratyński, J.; Rusiński, M.; Kokurewicz, T.; Bereszyński, A.; Wojciechowski, M. Clustering behavior in wintering great er Mouse-eared bats Myotis myotis—The effect of microenvironmental conditions. Acta Chiropterologica 2012, 14, 417–424. [Google Scholar] [CrossRef]
- Stawski, C.; Willis, C.K.R.; Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 2014, 292, 86–100. [Google Scholar] [CrossRef]
- Willis, C.K.R. Trade-offs Influencing the Physiological Ecology of Hibernation in Temperate-Zone Bats. Integr. Comp. Biol. 2017, 57, 1214–1224. [Google Scholar] [CrossRef]
- McGuire, L.P.; Fuller, N.W.; Dzal, Y.A.; Haase, C.G.; Silas, K.A.; Willis, C.K.R.; Olson, S.H.; Lausen, C.L. Similar hibernation physiology in bats across broad geographic ranges. J. Comp. Physiol. B 2022, 192, 171–181. [Google Scholar] [CrossRef]
- Day, K.M.; Tomasi, T.E. Winter energetics of female Indiana bats Myotis sodalis. Physiol. Biochem. Zool. 2014, 87, 56–64. [Google Scholar] [CrossRef]
- Humphries, M.M.; Thomas, D.W.; Kramer, D.L. The role of energy availability in mammalian hibernation: A cost-benefit approach. Physiol. Biochem. Zool. 2003, 76, 165–179. [Google Scholar] [CrossRef]
- Bogdanowicz, W.; Urbańczyk, Z. Some ecological aspects of bats hibernating in city of Poznań. Acta Theriol. 1983, 28, 371–385. [Google Scholar] [CrossRef]
- Lesiński, G. Wpływ Antropogenicznych Przekształceń Krajobrazu na Strukturę i Funkcjonowanie Zespołów Nietoperzy w Polsce; Wydawnictwo SGGW: Warsaw, Poland, 2006. [Google Scholar]
- Kłys, G.; Wołoszyn, B. The influence of weather and interior microclimate on the hibernation of common long-eard bats (Plecotus auritus). Nat. J. 2005, 38, 57–68. [Google Scholar]
- Kłys, G. Wybrane aspekty hibernacji nietoperzy. In Wpływ Środowiskowych Warunków na Wybór Hibernaculum Przez Nietoperze; Wołoszyn, B.W., Yagt-Yazykova, E., Kuśnierz, A., Eds.; ZPW Plik: Bytom, Poland, 2008. [Google Scholar]
- Kokurewicz, T. Ochrona nietoperzy w obszarze Natura 2000 “Nietoperek” z perspektywy 20 lat do’swiadcze´n. In Materiały Ogólnopolskiej Konferencji Chiropterologicznej; Warchałowski, M., Ed.; Grunwald24: Krynica Zdrój, Poland, 2013; pp. 36–37. (In Polish) [Google Scholar]
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Koenker, R.; Chernozhukov, V.; He, X.; Peng, L. Handbook of Quantile Regression; Chapman & Hall/CRC Handbooks of Modern Statistical Methods; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Davino, Q.C.; Furno, M.; Vistocco, D. Quantile Regression; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Chambers, J.M.; Hastie, T.J. Statistical Models in S; Chapman & Hall Computer Science Series; Chapman & Hall: New York, NY, USA, 1993. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org (accessed on 2 November 2023).
- Koenker, R. Quantreg: Quantile Regression. R Package Version 5.67 (Version 5.67). R. 2020. Available online: https://CRAN.R-project.org/package=quantreg (accessed on 2 November 2023).
- Pawiński, J.; Roszkowski, J.; Strzemiński, J. Przewietrzanie Kopalń; Śląskie Wydawnictwo Techniczne: Katowice, Poland, 1995. [Google Scholar]
- Paszyński, J.; Miara, K.; Skoczek, J. Wymiana Energii Między Atmosferą a Podłożem Jako Podstawa Kartowania Topoklimatycznego; Dokumentacja Geograficzna 14; IG i PZ PAN: Warsaw, Poland, 1999. [Google Scholar]
- Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 2004, 66, 239–274. [Google Scholar] [CrossRef]
- Dunbar, M.B.; Tomasi, T.E. Arousal patterns, metabolic rate, and an energy budget for ekstern red bats (Lasiurus borealis) in Winter. J. Mammal. 2006, 87, 1096–1102. [Google Scholar] [CrossRef]
- Wermundsen, T.; Siivonen, Y. Seasonal variation in use of winter roosts by five bat species in south-east Finland. Cent. Eur. J. Biol. 2010, 5, 262–273. [Google Scholar] [CrossRef]
- Thomas, D.W.; Cloutier, D. Evaporative water by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 1992, 65, 443–456. [Google Scholar] [CrossRef]
- Gilbert, C.; McCafferty, D.; LeMaho, Y.; Martrette, J.M.; Giroud, S.; Blanc, S.; Ancel, A. One for all and all for one: The energetics benefits of huddling in endotherms. Biol. Rev. Camb. Philos. Soc. 2010, 85, 545–569. [Google Scholar] [CrossRef]
- Gottfried, I.; Gottfried, T.; Lesiński, G.; Hebda, G.; Ignaczak, M.; Wojtaszyn, G.; Jurczyszyn, M.; Fuszara, M.; Fuszara, E.; Grzywiński, W.; et al. Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change—Are current monitoring schemes still reliable for cryophilic bat species? PLoS ONE 2020, 15, e0227912. [Google Scholar] [CrossRef]
- McClure, M.L.; Crowley, D.; Haase, C.G.; McGuire, L.P.; Fuller, N.W.; Hayman, D.T.S.; Lausen, C.L.; Plowright, R.K.; Dickson, B.G.; Olson, S.H. Linking surface and subterranean climate: Implications for the study of hibernating bats and other cave dwellers. Ecosphere 2020, 11, e03274. [Google Scholar] [CrossRef]
- Koch, M.; Manecke, J.; Burgard, J.P.; Münnich, R.; Kugelschafter, K.; Kiefer, A.; Veith, M. How weather triggers the emergence of bats from their subterranean hibernacula. Sci. Rep. 2023, 13, 6344. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, J.A.; Reiners, T.E. Erratum to: Mating at summer sites: Indications fromparentage analysis and roosting behaviour of Daubenton’s bats (Myotis daubentonii). Conserv. Genet. 2012, 13, 1433. [Google Scholar] [CrossRef]
- Studier, E.H. Evaporative water loss in bats. Comp. Biochem. Physiol. 1970, 35, 935–943. [Google Scholar] [CrossRef]
- Procter, J.W.; Studier, E.H. Effects of ambient temperature and water vapor pressure on evaporative water loss in Myotis lucifugus. J. Mammal. 1970, 51, 799–804. [Google Scholar] [CrossRef]
- Stapp, P.; Pekins, P.J.; Mautz, W.W. Winter energy expenditure and the distribution of southern flying squirrels. Can. J. Zool. 1991, 69, 2548–2555. [Google Scholar] [CrossRef]
- Canals, M. Thermal energetic of small animals. Biol. Res. 1998, 31, 367–374. [Google Scholar]
- Brown, P.E. California leaf-nosed bat Macrotus californicus. In The Smithsonian Book of North American Mammals; Wilson, D.E., Ruff, S., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1999; pp. 74–75. [Google Scholar]
- Jefimow, M.; Głąbska, M.; Wojciechowski, M.S. Social thermoregulation and torpor in Siberian hamster. J. Exp. Biol. 2011, 214, 1100–1108. [Google Scholar] [CrossRef]
- Wojciechowski, M.; Jefimow, M.; Pinshow, B. Heterothermy, and the Energetic Consequences of Huddling in Small Migrating Passerine Birds. Integr. Comp. Biol. 2011, 51, 409–418. [Google Scholar] [CrossRef]
Parameter | T [°C] | Rh [%] | v [m/s] | n [-] |
---|---|---|---|---|
min | 6.00 | 56.4 | 0.01 | 1 |
q25 | 8.28 | 74.5 | 0.05 | 1 |
median | 9.05 | 78.4 | 0.12 | 1 |
q75 | 9.90 | 81.3 | 0.15 | 1 |
max | 12.40 | 91.8 | 1.17 | 220 |
mean | 8.87 | 77.7 | 0.19 | 4.5 |
SD | 1.29 | 6.8 | 0.25 | 18.9 |
Structural Parameter | Value | SE | p-Value |
---|---|---|---|
τ = 0.925 | |||
β0 | 10 | 13 | 0.431 |
β1 | −3.3 | 7.8 | 0.676 |
β2 | 1.4 | 8.8 | 0.871 |
β3 | 2 | 17 | 0.916 |
β4 | −3.5 | 5.6 | 0.532 |
β5 | 4 | 11 | 0.745 |
β6 | −3 | 12 | 0.810 |
β7 | −1.8 | 6.8 | 0.794 |
τ = 0.950 | |||
β0 | 46 | 16 | 0.006 |
β1 | 9.2 | 9.6 | 0.335 |
β2 | −14 | 10 | 0.185 |
β3 | 35 | 19 | 0.061 |
β4 | −16.7 | 7.1 | 0.019 |
β5 | 31 | 14 | 0.029 |
β6 | −29 | 13 | 0.030 |
β7 | −16.9 | 8.2 | 0.040 |
τ = 0.975 | |||
β0 | 56 | 16 | 0.001 |
β1 | 3 | 11 | 0.799 |
β2 | −9 | 13 | 0.489 |
β3 | 28 | 19 | 0.145 |
β4 | −20.7 | 8.3 | 0.014 |
β5 | 37 | 16 | 0.021 |
β6 | −29 | 13 | 0.030 |
β7 | −18.0 | 9.6 | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kłys, G.; Ziembik, Z.; Makuchowska-Fryc, J. Bat Hibernation: In Groups or Individually? Appl. Sci. 2024, 14, 2125. https://doi.org/10.3390/app14052125
Kłys G, Ziembik Z, Makuchowska-Fryc J. Bat Hibernation: In Groups or Individually? Applied Sciences. 2024; 14(5):2125. https://doi.org/10.3390/app14052125
Chicago/Turabian StyleKłys, Grzegorz, Zbigniew Ziembik, and Joanna Makuchowska-Fryc. 2024. "Bat Hibernation: In Groups or Individually?" Applied Sciences 14, no. 5: 2125. https://doi.org/10.3390/app14052125
APA StyleKłys, G., Ziembik, Z., & Makuchowska-Fryc, J. (2024). Bat Hibernation: In Groups or Individually? Applied Sciences, 14(5), 2125. https://doi.org/10.3390/app14052125