Effect of Surface Renewal on the Drop Size Distribution in Dropwise Condensation within a Hybrid Surface
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Drop Size Distribution
2.2. Proposed Drop Size Distribution
2.2.1. Simulation Procedure
2.2.2. Data Analysis
3. Results and Discussion
3.1. Simulation Work
3.2. Model Validation
3.3. Area Fraction
3.4. Surface Renewal
3.5. Drop Size Distribution for Hybrid Surfaces
4. Conclusions
- (a)
- From simulation work, area fraction occupied by drops was estimated for values of 0.125, 0.25, 0.5, 0.75, and 1 and a total temperature drop of 2, 4, and 8 . The area fraction, , ranged from 0.28 and 0.296, and an average of 0.288 was selected to reflect the variation of .
- (b)
- The average of 0.288 for DWC within the hybrid surface was different from the reported value of 0.55 for full DWC due to the consideration of surface renewal by sweeping and merging.
- (c)
- Surface renewal was improved by the hybrid surface for values greater than 0.5 due to the contribution of merging. When reached unity, the surface renewal rate was enhanced by 85% at and 64% at .
- (d)
- Drop size distribution for DWC in a hybrid surface generally shows a steeper slope on the logarithmic scale, where the population of larger drops is less than that of full DWC due to the combined effect of surface renewal and intensive coalescence.
- (e)
- Increasing drops’ nucleation or lowering the effective radius accelerates the surface renewal and coalescence process for a given maximum radius.
- (f)
- An exponent of 1/3 in the drop size distribution of large and small drops was modified for DWC on a hybrid surface with the consideration of surface renewal by sweeping and merging and intensive coalescence. The modification is in a simple polynomial form of effective and maximum radii.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
distance between neighboring drops’ centers [m] | |
group parameters | |
group parameters | |
area fraction | |
gravitational force [m/s2] | |
G | growth rate |
interfacial heat transfer coefficient [W/m2.K] | |
latent heat of vaporization [J/kg] | |
coating layer thermal conductivity [W/m.K] | |
condensate thermal conductivity [W/m.K] | |
exponent in drop size distribution | |
small drop size distribution [m−3] | |
large drop size distribution [m−3] | |
nucleation sites [m−2] | |
heat transfer through a single drop [W] | |
drop radius [m] | |
effective radius [m] | |
maximum radius [m] | |
minimum radius [m] | |
s | distance between two drops’ centers |
ratio of maximum drop diameter to DWC width | |
saturation temperature [K] | |
dropwise condensation region width [m] | |
Greek Symbols | |
total temperature drop [°C] | |
contact angle [°] | |
advanced contact angle [°] | |
receding contact angle [°] | |
viscosity [Pa.s] | |
surface tension [N/m] | |
steam density [kg/m3] | |
ratio of maximum radius | |
coating layer thickness [m] | |
Abbreviations | |
DWC | dropwise condensation |
FWC | filmwise condensation |
References
- Dai, B.; Wang, Q.; Liu, S.; Zhang, J.; Wang, Y.; Kong, Z.; Chen, Y.; Wang, D. Multi-objective optimization analysis of combined heating and cooling transcritical CO2 system integrated with mechanical subcooling utilizing hydrocarbon mixture based on machine learning. Energy Convers. Manag. 2024, 301, 118057. [Google Scholar] [CrossRef]
- Dai, B.; Wu, T.; Liu, S.; Qi, H.; Zhang, P.; Wang, D.; Wang, X. Flow boiling heat transfer characteristics of zeotropic mixture CO2/R152a with large temperature glide in a 2 mm horizontal tube. Int. J. Heat Mass Transf. 2024, 218, 124779. [Google Scholar] [CrossRef]
- Jakob, M. Heat Transfer in Evaporation and Condensation. Mech. Eng. 1936, 58, 729–739. [Google Scholar]
- LeFevre, E.; Rose, J. An Experimental Study of Heat Transfer by Dropwise Condensation. Int. J. Heat Mass Transf. 1965, 8, 43–90. [Google Scholar] [CrossRef]
- LeFevre, E.J.; Rose, J.W. A theory of heat transfer by dropwise condensation. In Proceedings of the International Heat Transfer Conference 3, Chicago, IL, USA, 7–12 August 1966. [Google Scholar]
- Neumann, A.W.; Abdelmessih, A.H.; Hameed, A. The Role of Contact Angles and Contact Angle Hysteresis in Dropwise Condensation Heat Transfer. Int. J. Heat Mass Transf. 1978, 21, 947–953. [Google Scholar] [CrossRef]
- Fatica, N.; Katz, D.L. Dropwise Condesation. Chem. Eng. Prog. 1949, 45, 661–674. [Google Scholar]
- Rose, J.W. Dropwise Condensation Theory. Int. J. Heat Mass Transf. 1981, 24, 191–194. [Google Scholar] [CrossRef]
- Tanaka, H. A Theoretical Study of Dropwise Condensation. Trans. ASME 1975, 97, 72–78. [Google Scholar] [CrossRef]
- Rose, J.W. Some Aspects of Condensation Heat Transfer Theory. Int. Commun. Heat Mass Transf. 1988, 15, 449–473. [Google Scholar] [CrossRef]
- Rose, J.W. Condensation heat transfer fundamentals. Chem. Eng. Res. Des. 1998, 76, 143–152. [Google Scholar] [CrossRef]
- Rose, J.W.; Glicksman, L.R. Dropwise Condensation—The Distribution of Drop Sizes. Int. J. Heat Mass Transf. 1973, 16, 411–425. [Google Scholar] [CrossRef]
- Maa, J.R. Drop Size Distribution and Heat Flux of Dropwise Condensation. Chem. Eng. J. 1977, 16, 171–176. [Google Scholar] [CrossRef]
- Abu-Orabi, M. Modeling of heat transfer in dropwise condensation. Int. J. Heat Mass Transf. 1998, 41, 81–87. [Google Scholar] [CrossRef]
- Lan, Z.; Ma, X.; Zhou, X.; Wang, M. Dropwise condensation heat transfer: Effect of the liquid-solid surface free energy difference. J. Enhanc. Heat 2009, 16, 61–71. [Google Scholar] [CrossRef]
- Kim, S.; Kim, K.J. Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces. J. Heat Transf. 2011, 133, 081502. [Google Scholar] [CrossRef]
- Hu, H.; Tang, G. Theoretical investigation of stable dropwise condensation heat transfer on horizontal tube. Appl. Therm. Eng. 2014, 62, 671–679. [Google Scholar] [CrossRef]
- Bahrami, H.R.T.; Saffari, H. Mathematical Modeling and Numerical Simulation of Dropwise Condensation on an Inclined Circular Tube. J. Aerosp. Technol. Manag. 2017, 9, 476–499. [Google Scholar] [CrossRef]
- Xu, W.; Lan, Z.; Liu, Q.; Du, B.; Ma, X. Droplet size distribution in dropwise condensation heat transfer: Considering of droplet overlapping and multiple re-nucleation. Int. J. Heat Mass Transf. 2018, 127, 44–54. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.; Li, G.; Sundén, B.; Yan, J. Improved modeling of heat transfer in dropwise condensation. Int. J. Heat Mass Transf. 2020, 155, 119719. [Google Scholar] [CrossRef]
- Peng, B.; Ma, X.; Lan, Z.; Xu, W.; Wen, R. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect. Int. J. Heat Mass Transf. 2014, 77, 785–794. [Google Scholar] [CrossRef]
- Alhashem, A.; Khan, J. Heat Transfer Analysis for Dropwise-Filmwise Hybrid Surface of Steam on Vertical Plate. J. Therm. Sci. 2021, 30, 962–972. [Google Scholar] [CrossRef]
- Denoga, G.J.C.; Balbarona, J.A.; Salapare, H.S., III. Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface. Colloids Interfaces 2023, 7, 53. [Google Scholar] [CrossRef]
- Liu, W.; Gui, M.; Zha, Y.; Li, Z. Numerical Investigation of the Effect of Surface Wettability and Rotation on Condensation Heat Transfer in a Sludge Dryer Vertical Paddle. Energies 2023, 16, 901. [Google Scholar] [CrossRef]
- Askan, S.; Rose, J. Dropwise Condensation–The effect of thermal properties of the condeser material. Int. J. Heat Mass Transf. 1973, 16, 461–467. [Google Scholar]
- Orejon, D.; Shardt, O.; Gunda NS, K.; Ikuta, T.; Takahashi, K.; Takata, Y.; Mitra, S.K. Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces. Int. J. Heat Mass Transf. 2017, 114, 187–197. [Google Scholar] [CrossRef]
- Ren, S.; Gao, S.; Xu, Z.; Wu, S.; Deng, Z. Experimental Study on the Condensation Heat Transfer on a Wettability-Interval Grooved Surface. Appl. Sci. 2023, 13, 10518. [Google Scholar] [CrossRef]
- Kumagai, S.; Tanaka, S.; Katsuda, K.; Shimada, R. On the enhancement of filmwise condensation heat transfer by means of the coexisting with dropwise condensation sections. Exp. Heat Transf. 1991, 4, 71–82. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, X.; Lan, Z. Experimental Investigation of Enhancment of Dropwise Condensation Heat Transfer of Steam-Air Mixture: Falling Droplet Effect. J. Enhanc. Heat Transf. 2007, 14, 295–305. [Google Scholar] [CrossRef]
- Alwazzan, M.; Egab, K.; Peng, B.; Khan, J.; Li, C. Condensation on hybrid-patterned copper tubes (II): Visualization study of droplet dynamics. Int. J. Heat Mass Transf. 2017, 112, 950–958. [Google Scholar] [CrossRef]
- Alwazzan, M.; Egab, K.; Peng, B.; Khan, J.; Li, C. Condensation on hybrid-patterned copper tubes (I): Characterization of condensation Heat Transfer. Int. J. Heat Mass Transf. 2017, 112, 991–1004. [Google Scholar] [CrossRef]
- Peng, B.; Ma, X.; Lan, Z.; Xu, W.; Wen, R. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic—hydrophilic hybrid surfaces. Int. J. Heat Mass Transf. 2015, 83, 27–38. [Google Scholar] [CrossRef]
- Wu, Y.T.; Yang, C.X.; Yuan, X.G. Drop Distribution and numerical simulation of dropwise condensation Heat Transfer. Int. J. Heat Mass Transf. 2001, 44, 4455–4464. [Google Scholar] [CrossRef]
- Mei, M.; Yu, B.; Cai, J.; Luo, L. A fractal analysis of dropwise condensation Heat Transfer. Int. J. Heat Mass Transf. 2009, 52, 4823–4828. [Google Scholar] [CrossRef]
- Qi, B.; Wei, J.; Zhang, L.; Xu, H. A fractal dropwise condensation heat transfer model including the effects of contact angle and drop size distribution. Int. J. Heat Mass Transf. 2015, 83, 259–272. [Google Scholar] [CrossRef]
- Bonner, R.W., III. Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination. Int. J. Heat Mass Transf. 2013, 61, 245–253. [Google Scholar] [CrossRef]
- Rose, J.W. Further aspects of dropwise condensation theory. Int. J. Heat Mass Transf. 1976, 19, 1363–1370. [Google Scholar] [CrossRef]
- Singh, M.; Pawar, N.D.; Kondaraju, S.; Bahga, S.S. Modeling and Simulation of Dropwise Condensation: A Review. Indian Inst. Sci. 2019, 99, 157–171. [Google Scholar] [CrossRef]
- Alhashem, A.E. A Model for Condensation Heat Transfer in Hydrophobic-Hydrophilic Surfaces. Doctoral Dissertation, University of South Carolina, Columbia, SC, USA, 2019. [Google Scholar]
- Croce, G.; Suzzi, N. Numerical Simulation of Dropwise Condensation of Steam over Hybrid Surfaces via New Non-Dimensional Heat Transfer Model. Fluids 2023, 8, 300. [Google Scholar] [CrossRef]
- Graham, C.; Griffith, P. Drop Size Distributions and Heat Transfer in Dropwise Condensation. Int. J. Heat Mass Transf. 1972, 16, 337–346. [Google Scholar] [CrossRef]
- Wu, H.W.; Maa, J.R. On the heat transfer in dropwise condensation. Chem. Eng. J. 1976, 12, 225–231. [Google Scholar] [CrossRef]
- Extrand, C.E.; Kumagai, Y. Liquid drops on an inclined plane: The Relation Between Contact Angle, Drop Shape and Retentive Force. J. Colloid Interface Sci. 1995, 170, 515–521. [Google Scholar] [CrossRef]
- Randolph, A.D. Theory of Particulate Processes, 2nd ed.; Academic: New York, NY, USA, 1988. [Google Scholar]
- Mei, M.; Yu, B.; Zou, M.; Luo, L. A numerical study of growth mechanism of dropwise condensation. Int. J. Heat Mass Transf. 2011, 54, 2004–2013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhashem, A.; Alrahmani, M.; Abou-Ziyan, H. Effect of Surface Renewal on the Drop Size Distribution in Dropwise Condensation within a Hybrid Surface. Appl. Sci. 2024, 14, 1931. https://doi.org/10.3390/app14051931
Alhashem A, Alrahmani M, Abou-Ziyan H. Effect of Surface Renewal on the Drop Size Distribution in Dropwise Condensation within a Hybrid Surface. Applied Sciences. 2024; 14(5):1931. https://doi.org/10.3390/app14051931
Chicago/Turabian StyleAlhashem, Abdulwahab, Mosab Alrahmani, and Hosny Abou-Ziyan. 2024. "Effect of Surface Renewal on the Drop Size Distribution in Dropwise Condensation within a Hybrid Surface" Applied Sciences 14, no. 5: 1931. https://doi.org/10.3390/app14051931
APA StyleAlhashem, A., Alrahmani, M., & Abou-Ziyan, H. (2024). Effect of Surface Renewal on the Drop Size Distribution in Dropwise Condensation within a Hybrid Surface. Applied Sciences, 14(5), 1931. https://doi.org/10.3390/app14051931