Phytochemical Analysis and Amoebicidal Evaluation of Different Agave Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvesting of the Raw Material and Ethanolic Extraction
2.2. UV–Vis
2.3. Phytochemical Screening
2.3.1. Test for Flavonoids
2.3.2. Test for Sugars
2.3.3. Test for Sterols and Triterpenes
2.3.4. Test for Saponins
2.4. Culture and Maintenance of E. histolytica
2.5. In Vitro Susceptibility Assay
2.6. Cell Viability Assay
2.7. Bright-Field Microscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Ethanolic Extracts of Agave tequilana, Agave angustifolia, Agave rhodacantha, and Agave maximiliana UV–Vis Analysis and Phytochemical Screening
3.2. Ethanolic Extracts of Agave Leaves Inhibit the Growth of E. histolytica Trophozoites
3.3. Agave Extracts Reduced the Cell Viability of E. histolytica Trophozoites
3.4. Agave Extracts Induce Morphological Alterations in E. histolytica Trophozoites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrero, J.C.; Reyes-Lopez, M.; Serrano-Luna, J.; Shibayama, M.; Unzueta, J.; Leon-Sicairos, N.; de la Garza, M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int. J. Med. Microbiol. 2020, 310, 151358. [Google Scholar] [CrossRef]
- Shirley, D.T.; Farr, L.; Watanabe, K.; Moonah, S. A Review of the Global Burden, New Diagnostics, and Current Therapeutics for Amebiasis. Open Forum Infect. Dis. 2018, 5, ofy161. [Google Scholar] [CrossRef]
- Boletin Epidemiológico. Salud Pública Mex. Volume 41. Available online: https://www.gob.mx/cms/uploads/attachment/file/893627/sem06.pdf (accessed on 22 February 2024).
- Penuliar, G.M.; Nakada-Tsukui, K.; Nozaki, T. Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance. Front. Microbiol. 2015, 6, 354. [Google Scholar] [CrossRef]
- Powell, R. Inhibition of PI 3-Kinase Signaling Contributes to Metronidazole Resistance in the Protozoan Parasite, Entamoeba histolytica. 2009. Available online: https://tigerprints.clemson.edu/all_theses/684/ (accessed on 22 February 2021).
- Dhand, A.; Snydman, D.R. Mechanism of Resistance in Metronidazole. In Antimicrobial Drug Resistance; Springer: Berlin/Heidelberg, Germany, 2009; pp. 223–227. [Google Scholar] [CrossRef]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420–451. [Google Scholar] [CrossRef]
- Luo, L.; Yang, J.; Wang, C.; Wu, J.; Li, Y.; Zhang, X.; Li, H.; Zhang, H.; Zhou, Y.; Lu, A.; et al. Natural products for infectious microbes and diseases: An overview of sources, compounds, and chemical diversities. Sci. China Life Sci. 2022, 65, 1123–1145. [Google Scholar] [CrossRef] [PubMed]
- Khater, H.; Govindarajan, M.; Benelli, G. Natural Remedies in the Fight Against Parasites; IntechOpen: London, UK, 2017; Chapter 3. EBOOK (PDF); ISBN 978-953-51-4740-4. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Cantun, D.; Ramos-Cassellis, M.E.; Marin-Castro, M.A.; Castelan-Vega, R.D.C. Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse. J. Fungi 2020, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, K.; Sharma, R.; Cruz-Martins, N.; Valko, M.; Upadhyay, N.K.; Kuca, K.; Bhardwaj, P. Studies of Phytochemicals, Antioxidant, and Antibacterial Activities of Pinus gerardiana and Pinus roxburghii Seed Extracts. BioMed Res. Int. 2022, 2022, 5938610. [Google Scholar] [CrossRef]
- Yangui, I.; Younsi, F.; Ghali, W.; Boussaid, M.; Messaoud, C. Phytochemicals, antioxidant and anti-proliferative activities of Myrtus communis L. genotypes from Tunisia. S. Afr. J. Bot. 2021, 137, 35–45. [Google Scholar] [CrossRef]
- Rosmalena, R.; Widyastuti, P.A.; Yazid, F.; Ambarwati, N.S.S.; Ahmad, I. Phytochemicals and Antioxidant Activities Evaluation of Origanum vulgare (L.) Stem Bark Extracts. Pharmacogn. J. 2021, 13, 965–970. [Google Scholar] [CrossRef]
- Hochma, E.; Yarmolinsky, L.; Khalfin, B.; Nisnevitch, M.; Ben-Shabat, S.; Nakonechny, F. Antimicrobial Effect of Phytochemicals from Edible Plants. Processes 2021, 9, 2089. [Google Scholar] [CrossRef]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef] [PubMed]
- Alducin-Martinez, C.; Ruiz Mondragon, K.Y.; Jimenez-Barron, O.; Aguirre-Planter, E.; Gasca-Pineda, J.; Eguiarte, L.E.; Medellin, R.A. Uses, Knowledge and Extinction Risk Faced by Agave Species in Mexico. Plants 2022, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lemus, A.; Casas, A.; Tellez, O. Distribution, abundance and traditional management of Agave potatorum in the Tehuacan Valley, Mexico: Bases for sustainable use of non-timber forest products. J. Ethnobiol. Ethnomed. 2014, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- García Mendoza, A. Distribution of Agave (Agavaceae) in Mexico. Cactus Suculent J. 2002, 74, 177–187. Available online: https://www.researchgate.net/publication/303263665_Distribution_of_Agave_Agavaceae_in_Mexico (accessed on 22 February 2024).
- Martínez, S.; Nuñez-Guerrero, M.; Gurrola-Reyes, J.N.; Rutiaga-Quiñones, O.M.; Paredes-Ortíz, A.; Soto, O.N.; Flores-Gallegos, A.C.; Rodriguez-Herrera, R. Mescal an Alcoholic Beverage from Agave spp. with Great Commercial Potential. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–140. [Google Scholar] [CrossRef]
- Arellano-Plaza, M.; Paez-Lerma, J.B.; Soto-Cruz, N.O.; Kirchmayr, M.R.; Gschaedler Mathis, A. Mezcal Production in Mexico: Between Tradition and Commercial Exploitation. Front. Sustain. Food Syst. 2022, 6, 832532. [Google Scholar] [CrossRef]
- Fonseca Varela, M.; Chalita Tovar, L.E. Financial evaluation of Agave and mezcal production: Case study Caltepec, Puebla. Rev. Mex. Cienc. Agríc. 2021, 12, 263–273. [Google Scholar] [CrossRef]
- Tetreault, D.; McCulligh, C.; Lucio, C. Distilling agro-extractivism: Agave and tequila production in Mexico. J. Agrar. Chang. 2021, 21, 219–241. [Google Scholar] [CrossRef]
- Avila-Gaxiola, E.; Avila-Gaxiola, J.; Velarde-Escobar, O.; Ramos-Brito, F.; Atondo-Rubio, G.; Yee-Rendon, C. Effect of Drying Temperature on Agave tequilana Leaves: A Pretreatment for Releasing Reducing Sugars for Biofuel Production. J. Food Process Eng. 2016, 40, e12455. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Kammar, H.A.; Farag, M.A.; Saleh, D.O.; El Dine, R.S. Metabolomic profiling of five Agave leaf taxa via UHPLC/PDA/ESI-MS inrelation to their anti-inflammatory, immunomodulatory and ulceroprotective activities. Steroids 2020, 160, 108648. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Valle, E.; Herrera-Ruiz, M.; Salgado, G.R.; Zamilpa, A.; Ocampo, M.L.; Aparicio, A.J.; Tortoriello, J.; Jimenez-Ferrer, E. Anti-inflammatory effect of 3-O-[(6′-O-palmitoyl)-beta-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules 2014, 19, 15624–15637. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez Nava, Z.J.; Jimenez-Aparicio, A.R.; Herrera-Ruiz, M.L.; Jimenez-Ferrer, E. Immunomodulatory Effect of Agave tequilana Evaluated on an Autoimmunity Like-SLE Model Induced in Balb/c Mice with Pristane. Molecules 2017, 22, 848. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Ruiz, M.; Jimenez-Ferrer, E.; Tortoriello, J.; Zamilpa, A.; Alegria-Herrera, E.; Jimenez-Aparicio, A.R.; Arenas-Ocampo, M.L.; Martinez-Duncker, I.; Monterrosas-Brisson, N. Anti-neuroinflammatory effect of Agaves and cantalasaponin-1 in a model of LPS-induced damage. Nat. Prod. Res. 2021, 35, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Sidana, J.; Singh, B.; Sharma, O.P. Saponins of Agave: Chemistry and bioactivity. Phytochemistry 2016, 130, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Santos Cerqueira, G.; dos Santos e Silva, G.; Rios Vasconcelos, E.; Fragoso de Freitas, A.P.; Arcanjo Moura, B.; Silveira Macedo, D.; Lopes Souto, A.; Barbosa Filho, J.M.; de Almeida Leal, L.K.; de Castro Brito, G.A.; et al. Effects of hecogenin and its possible mechanism of action on experimental models of gastric ulcer in mice. Eur. J. Pharmacol. 2012, 683, 260–269. [Google Scholar] [CrossRef]
- Araldi, R.P.; Dos Santos, M.O.; Barbon, F.F.; Manjerona, B.A.; Meirelles, B.R.; de Oliva Neto, P.; da Silva, P.I.J.; Dos Santos, L.; Camargo, I.C.C.; de Souza, E.B. Analysis of antioxidant, cytotoxic and mutagenic potential of Agave sisalana Perrine extracts using Vero cells, human lymphocytes and mice polychromatic erythrocytes. Biomed. Pharmacother. 2018, 98, 873–885. [Google Scholar] [CrossRef]
- Singh, S.K.; Bimal, S.; Narayan, S.; Jee, C.; Bimal, D.; Das, P.; Bimal, R. Leishmania donovani: Assessment of leishmanicidal effects of herbal extracts obtained from plants in the visceral leishmaniasis endemic area of Bihar, India. Exp. Parasitol. 2011, 127, 552–558. [Google Scholar] [CrossRef]
- Botura, M.B.; Silva, G.D.; Lima, H.G.; Oliveira, J.V.; Souza, T.S.; Santos, J.D.; Branco, A.; Moreira, E.L.; Almeida, M.A.; Batatinha, M.J. In vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana Perr.) against gastrointestinal nematodes in goats. Vet. Parasitol. 2011, 177, 104–110. [Google Scholar] [CrossRef]
- Botura, M.B.; dos Santos, J.D.; da Silva, G.D.; de Lima, H.G.; de Oliveira, J.V.; de Almeida, M.A.; Batatinha, M.J.; Branco, A. In vitro ovicidal and larvicidal activity of Agave sisalana Perr. (sisal) on gastrointestinal nematodes of goats. Vet. Parasitol. 2013, 192, 211–217. [Google Scholar] [CrossRef]
- Guerra, J.O.; Meneses, A.; Simonet, A.M.; Macias, F.A.; Nogueiras, C.; Gomez, A.; Escario, J.A. Steroidal saponins from the plant Agave brittoniana with activity against the parasite Trichomona vaginalis. Rev. Biol. Trop. 2008, 56, 1645–1652. [Google Scholar]
- Lopez-Romero, J.C.; Ayala-Zavala, J.F.; Pena-Ramos, E.A.; Hernandez, J.; Gonzalez-Rios, H. Antioxidant and antimicrobial activity of Agave angustifolia extract on overall quality and shelf life of pork patties stored under refrigeration. J. Food Sci. Technol. 2018, 55, 4413–4423. [Google Scholar] [CrossRef]
- Monterrosas-Brisson, N.; Ocampo, M.L.; Jimenez-Ferrer, E.; Jimenez-Aparicio, A.R.; Zamilpa, A.; Gonzalez-Cortazar, M.; Tortoriello, J.; Herrera-Ruiz, M. Anti-inflammatory activity of different Agave plants and the compound cantalasaponin-1. Molecules 2013, 18, 8136–8146. [Google Scholar] [CrossRef]
- Quintanilla-Licea, R.; Mata-Cardenas, B.D.; Vargas-Villarreal, J.; Bazaldua-Rodriguez, A.F.; Kavimngeles-Hernandez, I.; Garza-Gonzalez, J.N.; Hernandez-Garcia, M.E. Antiprotozoal activity against Entamoeba histolytica of plants used in northeast Mexican traditional medicine. Bioactive compounds from Lippia graveolens and Ruta chalepensis. Molecules 2014, 19, 21044–21065. [Google Scholar] [CrossRef] [PubMed]
- Anairis Pujol Garcia, B.T.; Salas, E.; Calzadilla, C.; Acevedo, R.; Sierra, G. Tamizaje fitoquímico de extractos obtenidos de la planta Sapindus saponaria L que crece en Cuba. Bionatura 2020, 5. [Google Scholar] [CrossRef]
- Pant, D.R.; Pant, N.D.; Saru, D.B.; Yadav, U.N.; Khanal, D.P. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J. Intercult. Ethnopharmacol. 2017, 6, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.F.; Garms, R. The detection of plant sugars in Simulium damnosum s.l. by means of the cold Anthrone test. Trans. R. Soc. Trop. Med. Hyg. 1980, 74, 811–813. [Google Scholar] [CrossRef]
- Leandro Machado, R.; Nikolai, S. Fundamentos de Tecnología de Fitofármacos y Productos Naturales; Editorial Secretaría Ejecutiva del Convenio Andrés Bello, Impreso, Idioma Español: Madrid, Spain, 1999; ISBN 13978-958-698-001-2. [Google Scholar]
- Domínguez, S.; Xorge, A. Métodos de Investigación Fitoquímica. Editor México: Centro Regional de Ayuda Técnica, 1973. 281p. Materia Química Vegetal. Disponible, Ciencias Agronómicas y Forestales Colección General; 547 D671. Impreso, idioma Español. Available online: https://bibliotecadigital.uchile.cl/permalink/56UDC_INST/1rhgcaj/alma991002648959703936 (accessed on 22 February 2024).
- Diamond, L.S. Techniques of axenic cultivation of Entamoeba histolytica Schaudinn, 1903 and E. histolytica like amebae. J. Parasitol. 1968, 54, 1047–1056. [Google Scholar] [CrossRef]
- Patle, T.K.; Shrivas, K.; Kurrey, R.; Upadhyay, S.; Jangde, R.; Chauhan, R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV-vis and FTIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 242, 118717. [Google Scholar] [CrossRef]
- Mukadam, M.; Khan, N.A.M.; Khan, S.; Kauchali, A. Uv-Vis Spectroscopy in Analysis of Phytochemicals. Int. J. Pharm. Res. Appl. 2021, 6, 482–499. [Google Scholar]
- Thouri, A.; Chahdoura, H.; El Arem, A.; Omri Hichri, A.; Ben Hassin, R.; Achour, L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement. Altern. Med. 2017, 17, 248. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrncic, M.; Skerget, M.; Knez, Z.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Mabasa, X.E.; Mathomu, L.M.; Madala, N.E.; Musie, E.M.; Sigidi, M.T. Molecular Spectroscopic (FTIR and UV-Vis) and Hyphenated Chromatographic (UHPLC-qTOF-MS) Analysis and In Vitro Bioactivities of the Momordica balsamina Leaf Extract. Biochem. Res. Int. 2021, 2021, 2854217. [Google Scholar] [CrossRef]
- Hernandez, V.; Botella, M.A.; Hellin, P.; Cava, J.; Fenoll, J.; Mestre, T.; Martinez, V.; Flores, P. Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions. Foods 2021, 10, 188. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A. Effect of Impregnation of Biodegradable Polyesters with Polyphenols from Cistus linnaeus and Juglans regia Linnaeus Walnut Green Husk. Polymers 2019, 11, 669. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Hao, Z.; Li, M. Isolation and Structure Identification of Flavonoids. In Flavonoids—From Biosynthesis to Human Health; Chapter 2; Justino, G.C., Ed.; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Quinones-Munoz, T.A.; Villanueva-Rodriguez, S.J.; Torruco-Uco, J.G. Nutraceutical Properties of Medicago sativa L., Agave spp., Zea mays L. and Avena sativa L.: A Review of Metabolites and Mechanisms. Metabolites 2022, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- Biondi, F.; Balducci, F.; Capocasa, F.; Visciglio, M.; Mei, E.; Vagnoni, M.; Mezzetti, B.; Mazzoni, L. Environmental Conditions and Agronomical Factors Influencing the Levels of Phytochemicals in Brassica Vegetables Responsible for Nutritional and Sensorial Properties. Appl. Sci. 2021, 11, 1927. [Google Scholar] [CrossRef]
- Bjorkman, M.; Klingen, I.; Birch, A.N.; Bones, A.M.; Bruce, T.J.; Johansen, T.J.; Meadow, R.; Molmann, J.; Seljasen, R.; Smart, L.E.; et al. Phytochemicals of Brassicaceae in plant protection and human health influences of climate, environment and agronomic practice. Phytochemistry 2011, 72, 538–556. [Google Scholar] [CrossRef]
- Liebelt, D.J.; Jordan, J.T.; Doherty, C.J. Only a matter of time: The impact of daily and seasonal rhythms on phytochemicals. Phytochem. Rev. 2019, 18, 1409–1433. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Radácsi, P.; Gosztola, B.; Németh, É.Z. Effects of temperature and light intensity on morphological and phytochemical characters and antioxidant potential of wormwood (Artemisia absinthium L.). Biochem. Syst. Ecol. 2018, 79, 1–7. [Google Scholar] [CrossRef]
- Ahumada-Santos, Y.P.; Montes-Avila, J.; Uribe-Beltrán, M.d.J.; Díaz-Camacho, S.P.; López-Angulo, G.; Vega-Aviña, R.; López-Valenzuela, J.Á.; Heredia, J.B.; Delgado-Vargas, F. Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, Mexico. Ind. Crops Prod. 2013, 49, 143–149. [Google Scholar] [CrossRef]
- Almazán-Morales, A.; Moreno-Godínez, M.E.; Hernández-Castro, E.; Vázquez-Villamar, M.; Mora-Aguilera, J.A.; Cabrera-Huerta, E.; Alvarez-Fitz, P. Phytochemical profile and in vitro activity of Agave angustifolia and A. cupreata extracts against phytopathogenic fungi. Rev. Mex. De Fitopatol. Mex. J. Phytopathol. 2022, 40, 169–187. [Google Scholar] [CrossRef]
- Pereira, G.M.; Ribeiro, M.G.; da Silva, B.P.; Parente, J.P. Structural characterization of a new steroidal saponin from Agave angustifolia var. Marginata and a preliminary investigation of its in vivo antiulcerogenic activity and in vitro membrane permeability property. Bioorg. Med. Chem. Lett. 2017, 27, 4345–4349. [Google Scholar] [CrossRef]
- Bermudez-Bazan, M.; Castillo-Herrera, G.A.; Urias-Silvas, J.E.; Escobedo-Reyes, A.; Estarron-Espinosa, M. Hunting Bioactive Molecules from the Agave Genus: An Update on Extraction and Biological Potential. Molecules 2021, 26, 6789. [Google Scholar] [CrossRef]
- Martinez-Castillo, M.; Pacheco-Yepez, J.; Flores-Huerta, N.; Guzman-Tellez, P.; Jarillo-Luna, R.A.; Cardenas-Jaramillo, L.M.; Campos-Rodriguez, R.; Shibayama, M. Flavonoids as a Natural Treatment against Entamoeba histolytica. Front. Cell. Infect. Microbiol. 2018, 8, 209. [Google Scholar] [CrossRef]
- Arrieta, J.; Reyes, B.; Calzada, F.; Cedillo-Rivera, R.; Navarrete, A. Amoebicidal and giardicidal compounds from the leaves of Zanthoxylum liebmannianun. Fitoterapia 2001, 72, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.V.; Santos, F.O.; Lima, H.G.; Silva, G.D.D.; Uzeda, R.S.; Dias, E.R.; Branco, A.; Cardoso, K.V.; David, J.M.; Botura, M.B.; et al. In Vitro ovicidal and larvicidal activities of some saponins and flavonoids against parasitic nematodes of goats. Parasitology 2018, 145, 1884–1889. [Google Scholar] [CrossRef]
- Fleck, J.D.; Betti, A.H.; da Silva, F.P.; Troian, E.A.; Olivaro, C.; Ferreira, F.; Verza, S.G. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules 2019, 24, 171. [Google Scholar] [CrossRef]
- Oranday, C.R.M.; Morales, V.; Mata, C.; Gutiérrez, G.J.J. Determinación de la Concentración Inhibitoria Media (CI50) del Extracto Etanólico Obtenido del Agave Lophantha Sobre el Crecimiento in vitro de Entamoeba Histolytica, Trichomonas Vaginalis y Giardia Lamblia; Repositorio Universidad Autónoma de Nuevo León: San Nicolás de los Garza, México, 2002; TLRC119.G8. 1080124437. [Google Scholar]
- Soto, J.; Gomez, C.; Calzada, F.; Ramirez, M.E. Ultrastructural changes on Entamoeba histolytica HM1-IMSS caused by the flavan-3-ol, (-)-epicatechin. Planta Med. 2010, 76, 611–612. [Google Scholar] [CrossRef] [PubMed]
- Bolanos, V.; Diaz-Martinez, A.; Soto, J.; Marchat, L.A.; Sanchez-Monroy, V.; Ramirez-Moreno, E. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions. Mol. Biochem. Parasitol. 2015, 204, 16–25. [Google Scholar] [CrossRef]
- Maugis, B.; Brugues, J.; Nassoy, P.; Guillen, N.; Sens, P.; Amblard, F. Dynamic instability of the intracellular pressure drives bleb-based motility. J. Cell Sci. 2010, 123, 3884–3892. [Google Scholar] [CrossRef]
- Sierra-Lopez, F.; Baylon-Pacheco, L.; Espiritu-Gordillo, P.; Lagunes-Guillen, A.; Chavez-Munguia, B.; Rosales-Encina, J.L. Influence of Micropatterned Grill Lines on Entamoeba histolytica Trophozoites Morphology and Migration. Front. Cell. Infect. Microbiol. 2018, 8, 295. [Google Scholar] [CrossRef] [PubMed]
Ethanolic Extracts | |||||||
---|---|---|---|---|---|---|---|
A. angustifolia | Peak | 1 | 2 | 3 | 4 | 5 | 6 |
Wavelength (nm) | 666 | 610 | 560 | 535 | 505 | 409 | |
Absorbance (arb. u) | 0.230 | 0.044 | 0.026 | 0.043 | 0.064 | 0.575 | |
A. maximiliana | Peak | 1 | 2 | 3 | 4 | 5 | 6 |
Wavelength (nm) | 666 | 611 | 558 | 537 | 503 | 412 | |
Absorbance (arb. u) | 0.090 | 0.024 | 0.018 | 0.020 | 0.044 | 0.185 | |
A. rhodacantha | Peak | 1 | 2 | 3 | 4 | 5 | 6 |
Wavelength (nm) | 666 | 614 | 561 | 539 | 499 | 414 | |
Absorbance (arb. u) | 0.089 | 0.016 | 0.007 | 0.015 | 0.030 | 0.141 | |
A. tequilana | Peak | 1 | 2 | 3 | 4 | 5 | 6 |
Wavelength (nm) | 666 | 607 | 561 | 537 | 506 | 409 | |
Absorbance (arb. u) | 0.378 | 0.112 | 0.079 | 0.105 | 0.119 | 0.930 |
Phytochemical | A. tequilana | A. angustifolia | A. rhodachanta | A. maximiliana |
---|---|---|---|---|
Flavonoids | ++ | +++ | +++ | ++ |
Terpenes | +++ | +++ | +++ | +++ |
Steroids | +++ | +++ | +++ | ++ |
Saponins | ++ | ++ | ++ | +++ |
Tannins | ++ | ++ | ++ | ++ |
Coumarins | ++ | ++ | +++ | ++ |
Ethanolic Extract | IC50 µg/mL * |
---|---|
A. tequilana | 193.47 ± 22.16 |
A. angustifolia | 363.54 ± 10.41 |
A. maximiliana | 1219.93 ± 18.05 |
A. rhodanactha | 1824.10 ± 7.7772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Zapata, A.L.; Mora-Frias, J.I.; Briano-Elias, M.A.; Pérez-Centeno, A.; Barrientos-Ramírez, L.; Reynoso-Orozco, R.; Nava-Villalba, M.; Castillo-Romero, A. Phytochemical Analysis and Amoebicidal Evaluation of Different Agave Species. Appl. Sci. 2024, 14, 1905. https://doi.org/10.3390/app14051905
Rodríguez-Zapata AL, Mora-Frias JI, Briano-Elias MA, Pérez-Centeno A, Barrientos-Ramírez L, Reynoso-Orozco R, Nava-Villalba M, Castillo-Romero A. Phytochemical Analysis and Amoebicidal Evaluation of Different Agave Species. Applied Sciences. 2024; 14(5):1905. https://doi.org/10.3390/app14051905
Chicago/Turabian StyleRodríguez-Zapata, Ana Laura, Jorge Ivan Mora-Frias, Miguel Angel Briano-Elias, Armando Pérez-Centeno, Lucia Barrientos-Ramírez, Ramón Reynoso-Orozco, Mario Nava-Villalba, and Araceli Castillo-Romero. 2024. "Phytochemical Analysis and Amoebicidal Evaluation of Different Agave Species" Applied Sciences 14, no. 5: 1905. https://doi.org/10.3390/app14051905
APA StyleRodríguez-Zapata, A. L., Mora-Frias, J. I., Briano-Elias, M. A., Pérez-Centeno, A., Barrientos-Ramírez, L., Reynoso-Orozco, R., Nava-Villalba, M., & Castillo-Romero, A. (2024). Phytochemical Analysis and Amoebicidal Evaluation of Different Agave Species. Applied Sciences, 14(5), 1905. https://doi.org/10.3390/app14051905