Displacement Monitoring of Subway Tracks and Tunnels According to Adjacent Construction
Abstract
:1. Introduction
2. Displacement Monitoring of Tunnel Structures
2.1. Field Measurement
2.2. Measurement Results
2.3. Gaussian Analysis Results
3. Displacement Monitoring of Track Structures
3.1. Measurement Results
3.2. Gaussian Analysis Results
4. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.Y.; Kim, S.H.; Yang, G.N.; Lee, H.H.; Chung, J.S. Failure analysis of subway box structures according to displacement behavior on serviced urban railway. Appl. Sci. 2022, 12, 12637. [Google Scholar] [CrossRef]
- Choi, J.Y.; Yang, G.N.; Kim, T.J.; Chung, J.S. Analysis of ground subsidence according to tunnel passage in geological vulnerable zone. J. Converg. Cult. Technol. 2020, 6, 393–399. [Google Scholar] [CrossRef]
- Choi, J.Y.; Ahn, D.H.; Kim, S.H. Behavior characteristics of a booted sleeper track system according to substructure deformation. Appl. Sci. 2021, 11, 4507. [Google Scholar] [CrossRef]
- Chung, J.S.; Park, D.R.; Choi, J.Y. Evaluation of track irregularity effect due to adjacent excavation on serviced railway line. J. Converg. Cult. Technol. 2019, 5, 401–406. [Google Scholar] [CrossRef]
- Park, T.S.; Lee, S.H. Analyses of existing tunnel liner behaviors caused by excavation of upper layer with using laser scanning technology. J. Korean Geotech. Soc. 2015, 31, 29–36. [Google Scholar] [CrossRef]
- Bae, S.J.; Jung, W.; Chamrith, S.; Kim, C.J.; Kim, Y.M.; Hong, S.H.; Kim, J.G.; Kim, J.Y. Performance evaluation method of tunnel scanner for lining crack detection. J. Soc. Disaster Inf. 2021, 17, 39–52. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X. Performance and feasibility analysis of two microseismic location methods used in tunnel engineering. Tunn. Undergorund Space Technol. 2017, 63, 183–193. [Google Scholar] [CrossRef]
- Manuello, A.; Niccolini, G.; Carpinteri, A. AE monitoring of a concrete arch road tunnel: Damage evolution and localization. Eng. Fract. Mech. 2019, 210, 279–287. [Google Scholar] [CrossRef]
- Miliziano, S.; Caponi, S.; Carlaccini, D.; Lillis, A. Prediction of tunneling-induced effects on a historic building in Rome. Tunn. Undergr. Space Technol. 2021, 119, 104212. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, H.; Jiang, W.; Bai, W.; Liu, G. Automatic subways tunnel displacement monitoring using robotic total station. Measurement 2020, 151, 107251. [Google Scholar] [CrossRef]
- Xue, Y.; Cai, X.; Shadabfar, M.; Shao, H.; Zhang, S. Deep learning-based automatic recognition of water leakage area in shield tunnel lining. Tunn. Undergr. Space Technol. 2020, 104, 103524. [Google Scholar] [CrossRef]
- Wang, G.; Chen, W.; Cao, L.; Li, Y.; Liu, S.; Yu, J.; Wang, B. Retaining technology for deep foundation pit excavation adjacent to high-speed railways based on deformation control. Front. Earth Sci. 2021, 9, 735315. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, D.; Tang, Y.; Wang, Y. Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation. Autom. Constr. 2021, 130, 103830. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, S.H.; Lee, H.H.; Chung, J.S. Improvement of automatic measurement evaluation system for subway structures by adjacent excavation. Materials 2021, 14, 7492. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Park, D.R.; Chung, J.S.; Kim, S.H. Dynamic wheel-rail force-based track-irregularity evaluation for ballasted track on serviced railway by adjacent excavation. Appl. Sci. 2022, 12, 375. [Google Scholar] [CrossRef]
- Lee, H.H. A Study on Improvement of Automatic Measurement Evaluation System for Subway Structure by Adjacent Excavation. Ph.D. Thesis, Dongyang University, Yeongju-si, Republic of Korea, 2020. [Google Scholar]
- Korea Infrastructure Safety & Technology Corporation. A Study on the Evaluation Method of Appropriateness in Field Performance of Diagnosis and Maintenance Technology (Equipment); Korea Infrastructure Safety & Technology Corporation: Seoul, Republic of Korea, 2018. [Google Scholar]
- Hong, S.H.; Kim, J.G.; Cho, J.Y.; Kim, T.H. A Study on the necessity of verification and certification system of inspection and diagnostic equipment for infrastructure using advanced technologies. J. Korea Soc. Hazard Mitig. 2020, 16, 163–177. [Google Scholar] [CrossRef]
- Kim, I.; Lee, C. Development of video shooting system and technique enabling detection of micro cracks in the tunnel lining while driving. J. Korea Soc. Hazard Mitig. 2018, 18, 217–229. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Gonh, M.; Wu, H.; Wu, Y. Deformation and Stress Law of Surrounding Rock for a Bifurcated Tunnel with a Super-Large Section: A Case Study. Appl. Sci. 2023, 13, 12852. [Google Scholar] [CrossRef]
- He, J.; Yang, Z.; Zhang, X. Effect of Undercrossing Shield Tunnels Excavation on Existing Rectangular Pipe-Jacking Tunnels. Appl. Sci. 2023, 13, 12235. [Google Scholar] [CrossRef]
- Ansys Inc. ANSYS®2007 ANSYS Workbench 2023 R1; ANSYS Inc.: Cannonsberg, PA, USA, 2023. [Google Scholar]
Category | Tunnel Convergence Meter (Tape Extensometer) | Track Bed Settlement Monitoring Sensor | ||
---|---|---|---|---|
Angle | Length | Angle | Length | |
Measurement range | ±60 | 0~50 mm | ±15° | 0~50 mm |
Applied voltage/total resistance | 5~15 V direct current | 10 kΩ | 5~15 V DC | (5 kΩ) ± 20% |
Linearity | 0.05° | ±1% | ±0.1° | ±1% |
Sensitivity | 0.001° | 0.01% maximum | 0.001° | 0.001 mm |
Operating temperature of sensors | −20~+80 °C | −20~+80 °C | −30~+65 °C | −20~+80 °C |
Construction Step | Construction Condition | Monitoring Months |
---|---|---|
Step—0 | General condition | 0 |
Step—1 | Retaining wall construction | 1–4 |
Step—2 | Stage 1 excavation | 5–7 |
Step—3 | Stage 2 excavation and raker construction | 8–11 |
Step—4 | Stage 3 excavation and slab construction | 12–13 |
Step—5 | Stage 4 excavation and slab construction | 14–15 |
Step—6 | Stage 5 excavation and slab construction | 16 |
Step—7 | Stage 6 excavation and slab construction | 17–18 |
Section | Sensor | Average (mm) | Standard Deviation (mm) | Field Maintenance Criteria (mm) | ||||
---|---|---|---|---|---|---|---|---|
1 Month | 10 Months | 18 Months | 1 Month | 10 Months | 18 Months | |||
A | TL-1 | 0.002 | 0.001 | (−)0.020 | 0.044 | 0.010 | 0.014 | 3.0 |
TL-2 | 0.009 | (−)0.246 | (−)0.783 | 0.191 | 0.127 | 0.154 | ||
B | TL-1 | (−)0.049 | (−)0.137 | (−)0.286 | 0.114 | 0.041 | 0.068 | |
TL-2 | 0.073 | 0.018 | (−)0.036 | 0.067 | 0.051 | 0.044 | ||
C | TL-1 | 0.015 | (−)0.033 | (−)0.159 | 0.107 | 0.119 | 0.089 | |
TL-2 | (−)0.143 | (−)1.672 | (−)1.777 | 0.123 | 0.029 | 0.078 |
Sensor | Location (m) | Average (mm) | Standard Deviation (mm) | Field Maintenance Criteria (mm) | ||||
---|---|---|---|---|---|---|---|---|
1 Month | 10 Months | 18 Months | 1 Month | 10 Months | 18 Months | |||
RM-01 | 0 | (−)0.064 | 0.033 | (−)0.115 | 0.079 | 0.074 | 0.076 | 3.6 |
RM-11 | 20 | (−)0.086 | (−)0.126 | (−)0.167 | 0.066 | 0.058 | 0.073 | |
RM-21 | 40 | (−)0.049 | 0.059 | (−)0.122 | 0.072 | 0.069 | 0.073 | |
RM-31 | 60 | (−)0.077 | 0.017 | (−)0.213 | 0.109 | 0.149 | 0.119 | |
RM-41 | 80 | 0.045 | 0.479 | 0.558 | 0.153 | 0.163 | 0.126 | |
RM-52 | 102 | (−)0.200 | 0.116 | 0.113 | 0.105 | 0.079 | 0.078 | |
RM-61 | 120 | 0.074 | 0.071 | 0.082 | 0.150 | 0.043 | 0.063 |
Sensor | 1 Month (Xc + SD) | 18 Months (Xc + SD) | ||||
---|---|---|---|---|---|---|
Section A | Section B | Section C | Section A | Section B | Section C | |
TL-1 | (−)0.024 | (−)0.187 | (−)0.092 | (−)0.034 | (−)0.354 | (−)0.248 |
TL-2 | 0.000 | 0.006 | (−)0.266 | (−)0.937 | (−)0.080 | (−)1.855 |
TL-3 | (−)0.236 | (−)0.116 | (−)0.265 | 0.000 | (−)0.124 | (−)0.037 |
TL-4 | (−)0.070 | (−)0.272 | (−)0.211 | (−)0.034 | (−)0.397 | (−)0.207 |
TL-5 | (−)0.253 | (−)0.175 | (−)0.029 | (−)0.937 | (−)0.146 | 0.807 |
TL-6 | (−)0.079 | (−)0.090 | 0.198 | 0.000 | (−)0.124 | 0.414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-Y.; Ahn, D.-H. Displacement Monitoring of Subway Tracks and Tunnels According to Adjacent Construction. Appl. Sci. 2024, 14, 1887. https://doi.org/10.3390/app14051887
Choi J-Y, Ahn D-H. Displacement Monitoring of Subway Tracks and Tunnels According to Adjacent Construction. Applied Sciences. 2024; 14(5):1887. https://doi.org/10.3390/app14051887
Chicago/Turabian StyleChoi, Jung-Youl, and Dae-Hui Ahn. 2024. "Displacement Monitoring of Subway Tracks and Tunnels According to Adjacent Construction" Applied Sciences 14, no. 5: 1887. https://doi.org/10.3390/app14051887
APA StyleChoi, J.-Y., & Ahn, D.-H. (2024). Displacement Monitoring of Subway Tracks and Tunnels According to Adjacent Construction. Applied Sciences, 14(5), 1887. https://doi.org/10.3390/app14051887