Characterization of Small Micro-and Nanoparticles in Antarctic Snow by Electron Microscopy and Raman Micro-Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. TEM/EDX Analysis
2.3. Raman Micro-Spectroscopy
3. Results
3.1. TEM/EDX Analysis
3.2. Raman Micro-Spectroscopy
3.3. Occurrence of Small Micro- and Nanoparticles in Antarctica
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vecchiato, M.; Gambaro, A.; Kehrwald, N.M.; Ginot, P.; Kutuzov, S.; Mikhalenko, V.; Barbante, C. The Great Acceleration of Fragrances and PAHs Archived in an Ice Core from Elbrus, Caucasus. Sci. Rep. 2020, 10, 10661. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, M.; Gambaro, A.; Barbante, C.; Barbaro, E.; Caiazzo, L.; Vecchiato, M. Occurrence of the UV-Filter 2-Ethylhexyl 4-Methoxycinnimate (EHMC) in Antarctic Snow: First Results. Microchem. J. 2022, 183, 108060. [Google Scholar] [CrossRef]
- Szopińska, M.; Potapowicz, J.; Jankowska, K.; Luczkiewicz, A.; Svahn, O.; Björklund, E.; Nannou, C.; Lambropoulou, D.; Polkowska, Ż. Pharmaceuticals and Other Contaminants of Emerging Concern in Admiralty Bay as a Result of Untreated Wastewater Discharge: Status and Possible Environmental Consequences. Sci. Total Environ. 2022, 835, 155400. [Google Scholar] [CrossRef] [PubMed]
- Riboni, N.; Amorini, M.; Bianchi, F.; Pedrini, A.; Pinalli, R.; Dalcanale, E.; Careri, M. Ultra-Sensitive Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry Determination of Polycyclic Aromatic Hydrocarbons in Snow Samples Using a Deep Cavity BenzoQxCavitand. Chemosphere 2022, 303, 135144. [Google Scholar] [CrossRef]
- Arcoleo, A.; Bianchi, F.; Careri, M. Helical Multi-Walled Carbon Nanotube-Coated Fibers for Solid-Phase Microextraction Determination of Polycyclic Aromatic Hydrocarbons at Ultra-Trace Levels in Ice and Snow Samples. J. Chromatogr. A 2020, 1631, 461589. [Google Scholar] [CrossRef]
- Grotti, M.; Soggia, F.; Ardini, F.; Magi, E.; Becagli, S.; Traversi, R.; Udisti, R. Year-Round Record of Dissolved and Particulate Metals in Surface Snow at Dome Concordia (East Antarctica). Chemosphere 2015, 138, 916–923. [Google Scholar] [CrossRef]
- Grotti, M.; Soggia, F.; Ardini, F.; Magi, E. Major and Trace Element Partitioning between Dissolved and Particulate Phases in Antarctic Surface Snow. J. Environ. Monit. 2011, 13, 2511–2520. [Google Scholar] [CrossRef]
- Mattarozzi, M.; Bianchi, F.; Maffini, M.; Vescovi, F.; Catellani, D.; Suman, M.; Careri, M. ESEM-EDS-Based Analytical Approach to Assess Nanoparticles for Food Safety and Environmental Control. Talanta 2019, 196, 429–435. [Google Scholar] [CrossRef]
- Llorca, M.; Farré, M. Micromaterials and Nanomaterials as Potential Emerging Pollutants in the Marine Environment. In Contaminants of Emerging Concern in the Marine Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 375–400. [Google Scholar]
- Waller, C.L.; Griffiths, H.J.; Waluda, C.M.; Thorpe, S.E.; Loaiza, I.; Moreno, B.; Pacherres, C.O.; Hughes, K.A. Microplastics in the Antarctic Marine System: An Emerging Area of Research. Sci. Total Environ. 2017, 598, 220–227. [Google Scholar] [CrossRef]
- Materić, D.; Kjær, H.A.; Vallelonga, P.; Tison, J.L.; Röckmann, T.; Holzinger, R. Nanoplastics Measurements in Northern and Southern Polar Ice. Environ. Res. 2022, 208, 112741. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Félix, F.; Graciano-Verdugo, A.Z.; Moreno-Vásquez, M.J.; Lagarda-Díaz, I.; Barreras-Urbina, C.G.; Armenta-Villegas, L.; Olguín-Moreno, A.; Tapia-Hernández, J.A. Trends in Sustainable Green Synthesis of Silver Nanoparticles Using Agri-Food Waste Extracts and Their Applications in Health. J. Nanomater. 2022, 2022, 8874003. [Google Scholar] [CrossRef]
- Tran, T.K.; Nguyen, M.K.; Lin, C.; Hoang, T.D.; Nguyen, T.C.; Lone, A.M.; Khedulkar, A.P.; Gaballah, M.S.; Singh, J.; Chung, W.J.; et al. Review on Fate, Transport, Toxicity and Health Risk of Nanoparticles in Natural Ecosystems: Emerging Challenges in the Modern Age and Solutions toward a Sustainable Environment. Sci. Total Environ. 2024, 912, 169331. [Google Scholar] [CrossRef] [PubMed]
- Dobricǎ, E.; Engrand, C.; Leroux, H.; Rouzaud, J.N.; Duprat, J. Transmission Electron Microscopy of CONCORDIA Ultracarbonaceous Antarctic Micrometeorites (UCAMMS): Mineralogical Properties. Geochim. Cosmochim. Acta 2012, 76, 68–82. [Google Scholar] [CrossRef]
- Esquivel, E.; Murr, L. A TEM Analysis of Nanoparticulates in a Polar Ice Core. Mater. Charact. 2004, 52, 15–25. [Google Scholar] [CrossRef]
- Weinbruch, S.; Zou, L.; Ebert, M.; Benker, N.; Drotikova, T.; Kallenborn, R. Emission of Nanoparticles from Coal and Diesel Fired Power Plants on Svalbard: An Electron Microscopy Study. Atmos. Environ. 2022, 282, 119138. [Google Scholar] [CrossRef]
- Beltrami, D.; Calestani, D.; Maffini, M.; Suman, M.; Melegari, B.; Zappettini, A.; Zanotti, L.; Casellato, U.; Careri, M.; Mangia, A. Development of a Combined SEM and ICP-MS Approach for the Qualitative and Quantitative Analyses of Metal Microparticles and Sub-Microparticles in Food Products. Anal. Bioanal. Chem. 2011, 401, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Di, Z.; Pan, B.; Xing, B. Application of Atomic Force Microscopy (AFM) on Environmental Interfaces. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 589–604. [Google Scholar]
- Meyer, E.; Pawlak, R.; Glatzel, T. Scanning Probe Microscopy. In Encyclopedia of Condensed Matter Physics; Elsevier: Amsterdam, The Netherlands, 2024; pp. 51–62. [Google Scholar]
- Ren, Y.; Zhang, X.; Wei, H.; Xu, L.; Zhang, J.; Sun, J.; Wang, X.; Li, W. Comparisons of Methods to Obtain Insoluble Particles in Snow for Transmission Electron Microscopy. Atmos. Environ. 2017, 153, 61–69. [Google Scholar] [CrossRef]
- Ellis, A.; Edwards, R.; Saunders, M.; Chakrabarty, R.K.; Subramanian, R.; Van Riessen, A.; Smith, A.M.; Lambrinidis, D.; Nunes, L.J.; Vallelonga, P.; et al. Characterizing Black Carbon in Rain and Ice Cores Using Coupled Tangential Flow Filtration and Transmission Electron Microscopy. Atmos. Meas. Tech. 2015, 8, 3959–3969. [Google Scholar] [CrossRef]
- Cai, H.; Xu, E.G.; Du, F.; Li, R.; Liu, J.; Shi, H. Analysis of Environmental Nanoplastics: Progress and Challenges. Chem. Eng. J. 2021, 410, 128208. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Thomas, K.V. Quantitative Analysis of Nanoplastics in Environmental and Potable Waters by Pyrolysis-Gas Chromatography–Mass Spectrometry. J. Hazard. Mater. 2024, 464, 133013. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, J.; Yao, F.; Zhang, W.; Qi, X.; Gao, X.; Liu, Y.; Wang, J.; Zou, M.; Liang, P. A Review of Recent Progress in the Application of Raman Spectroscopy and SERS Detection of Microplastics and Derivatives. Microchim. Acta 2023, 190, 465. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Riboni, N.; Trolla, V.; Furlan, G.; Avantaggiato, G.; Iacobellis, G.; Careri, M. Differentiation of Aged Fibers by Raman Spectroscopy and Multivariate Data Analysis. Talanta 2016, 154, 467–473. [Google Scholar] [CrossRef]
- Li, Y.; Wu, M.; Li, H.; Xue, H.; Tao, J.; Li, M.; Wang, F.; Li, Y.; Wang, J.; Li, S. Current Advances in Microplastic Contamination in Aquatic Sediment: Analytical Methods, Global Occurrence, and Effects on Elemental Cycling. TrAC Trends Anal. Chem. 2023, 168, 117331. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Katsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in the Surface Waters of the Ross Sea (Antarctica): Occurrence, Distribution and Characterization by FTIR. Chemosphere 2017, 175, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.-J.; Gupta, D.; Cho, H.-R.; Hwang, H.J.; Hur, S.D.; Gim, Y.; Ro, C.-U. Single-Particle Investigation of Summertime and Wintertime Antarctic Sea Spray Aerosols Using Low-Z Particle EPMA, Raman Microspectrometry, and ATR-FTIR Imaging Techniques. Atmos. Chem. Phys. 2016, 16, 13823–13836. [Google Scholar] [CrossRef]
- Materić, D.; Kasper-Giebl, A.; Kau, D.; Anten, M.; Greilinger, M.; Ludewig, E.; Van Sebille, E.; Röckmann, T.; Holzinger, R. Micro-and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environ. Sci. Technol. 2020, 54, 2353–2359. [Google Scholar] [CrossRef] [PubMed]
- Stefánsson, H.; Peternell, M.; Konrad-Schmolke, M.; Hannesdóttir, H.; Ásbjörnsson, E.J.; Sturkell, E. Microplastics in Glaciers: First Results from the Vatnajökull Ice Cap. Sustainability 2021, 13, 4183. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Petrucci, R.; Chiarotto, I.; Mattiello, L.; Pandolfi, F.; Rocco, D.; Zollo, G.; Feroci, M. High Performance Liquid Chromatography Coupled with Mass Spectrometry for/and Nanomaterials: An Overview. In AIP Conference Proceedings; AIP: Melville, NY, USA, 2020; p. 020002. [Google Scholar]
- Mattarozzi, M.; Careri, M. Liquid Chromatography/Mass Spectrometry in Environmental Analysis. In Encyclopedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2023; pp. 1–30. [Google Scholar]
- Becagli, S.; Barbaro, E.; Bonamano, S.; Caiazzo, L.; Di Sarra, A.; Feltracco, M.; Grigioni, P.; Heintzenberg, J.; Lazzara, L.; Legrand, M.; et al. Factors Controlling Atmospheric DMS and Its Oxidation Products (MSA and NssSO42−) in the Aerosol at Terra Nova Bay, Antarctica. Atmos. Chem. Phys. 2022, 22, 9245–9263. [Google Scholar] [CrossRef]
- Feltracco, M.; Zangrando, R.; Barbaro, E.; Becagli, S.; Park, K.T.; Vecchiato, M.; Caiazzo, L.; Traversi, R.; Severi, M.; Barbante, C.; et al. Characterization of Free L- and D-Amino Acids in Size-Segregated Background Aerosols over the Ross Sea, Antarctica. Sci. Total Environ. 2023, 879, 163070. [Google Scholar] [CrossRef] [PubMed]
- Thamban, M.; Thakur, R.C. Trace Metal Concentrations of Surface Snow from Ingrid Christensen Coast, East Antarctica—Spatial Variability and Possible Anthropogenic Contributions. Environ. Monit. Assess. 2013, 185, 2961–2975. [Google Scholar] [CrossRef] [PubMed]
- Aves, A.R.; Revell, L.E.; Gaw, S.; Ruffell, H.; Schuddeboom, A.; Wotherspoon, N.E.; Larue, M.; Mcdonald, A.J. First Evidence of Microplastics in Antarctic Snow. Cryosphere 2022, 16, 2127–2145. [Google Scholar] [CrossRef]
- Balakrishna, K.; Praveenkumarreddy, Y.; Nishitha, D.S.; Gopal, C.M.; Shenoy, J.K.; Bhat, K.; Khare, N.; Dhangar, K.; Kumar, M. Occurrences of UV Filters, Endocrine Disruptive Chemicals, Alkyl Phenolic Compounds, Fragrances, and Hormones in the Wastewater and Coastal Waters of the Antarctica. Environ. Res. 2023, 222, 115327. [Google Scholar] [CrossRef]
- Sze, S.-K.; Siddique, N.; Sloan, J.J.; Escribano, R. Raman Spectroscopic Characterization of Carbonaceous Aerosols. Atmos. Environ. 2001, 35, 561–568. [Google Scholar] [CrossRef]
- Ferrugiari, A.; Tommasini, M.; Zerbi, G. Raman Spectroscopy of Carbonaceous Particles of Environmental Interest. J. Raman Spectrosc. 2015, 46, 1215–1224. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, L.; Yang, Y.; Deng, Y.; Li, K.; Cheng, H.; Dong, X.; Li, W.; Zhang, L. The application of Raman spectroscopy combined with multivariable analysis on source apportionment of atmospheric black carbon aerosols. Sci. Total Environ. 2019, 685, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Andrés López Ray, L.; Frost, Y.X.; Scholz, R. Vibrational Spectroscopic Characterization of the Sulphate-Carbonate Mineral Burkeite: Implications for Evaporites. Spectrosc. Lett. 2014, 47, 564–570. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman Spectroscopy for Fluid Inclusion Analysis. J. Geochemical Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Andrés López Ray, L.; Frost, Y.X.; Scholz, R. A Vibrational Spectroscopic Study of the Sulfate Mineral Glauberite. Spectrosc. Lett. 2014, 47, 740–745. [Google Scholar] [CrossRef]
- Bao, H.; Campbell, D.A.; Bockheim, J.G.; Thiemens, M.H. Origins of Sulphate in Antarctic Dry-Valley Soils as Deduced from Anomalous 17O Compositions. Nature 2000, 407, 499–502. [Google Scholar] [CrossRef]
- Kelly, A.; Lannuzel, D.; Rodemann, T.; Meiners, K.M.; Auman, H.J. Microplastic Contamination in East Antarctic Sea Ice. Mar. Pollut. Bull. 2020, 154, 111130. [Google Scholar] [CrossRef]
- Desai, U.; Sharma, B.K.; Singh, A.; Singh, A. Enhancement of Resistance against Damp Heat Aging through Compositional Change in PV Encapsulant Poly (Ethylene-Co-Vinyl Acetate). Sol. Energy 2020, 211, 674–682. [Google Scholar] [CrossRef]
- Bazzano, A.; Soggia, F.; Grotti, M. Source Identification of Atmospheric Particle-Bound Metals at Terra Nova Bay, Antarctica. Environ. Chem. 2015, 12, 245–252. [Google Scholar] [CrossRef]
- Calace, N.; Nardi, E.; Pietroletti, M.; Bartolucci, E.; Pietrantonio, M.; Cremisini, C. Antarctic Snow: Metals Bound to High Molecular Weight Dissolved Organic Matter. Chemosphere 2017, 175, 307–314. [Google Scholar] [CrossRef]
- Darham, S.; Zakaria, N.N.; Zulkharnain, A.; Sabri, S.; Khalil, K.A.; Merican, F.; Gomez-Fuentes, C.; Lim, S.; Ahmad, S.A. Antarctic Heavy Metal Pollution and Remediation Efforts: State of the Art of Research and Scientific Publications. Braz. J. Microbiol. 2023, 54, 2011–2026. [Google Scholar] [CrossRef]
- Gerringa, L.J.A.; Alderkamp, A.C.; Laan, P.; Thuróczy, C.E.; De Baar, H.J.W.; Mills, M.M.; van Dijken, G.L.; Haren, H.; van Arrigo, K.R. Iron from Melting Glaciers Fuels the Phytoplankton Blooms in Amundsen Sea (Southern Ocean): Iron Biogeochemistry. Deep. Res. Part II Top. Stud. Oceanogr. 2012, 71, 16–31. [Google Scholar] [CrossRef]
- Tian, H.A.; van Manen, M.; Wille, F.; Jung, J.; Lee, S.H.; Kim, T.W.; Aoki, S.; Eich, C.; Brussaard, C.P.D.; Reichart, G.J.; et al. The Biogeochemistry of Zinc and Cadmium in the Amundsen Sea, Coastal Antarctica. Mar. Chem. 2023, 249, 104223. [Google Scholar] [CrossRef]
- Marina-Montes, C.; Pérez-Arribas, L.V.; Anzano, J.; de Vallejuelo, S.F.-O.; Aramendia, J.; Gómez-Nubla, L.; de Diego, A.; Manuel Madariaga, J.; Cáceres, J.O. Characterization of Atmospheric Aerosols in the Antarctic Region Using Raman Spectroscopy and Scanning Electron Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120452. [Google Scholar] [CrossRef] [PubMed]
- Cordero, R.R.; Sepúlveda, E.; Feron, S.; Damiani, A.; Fernandoy, F.; Neshyba, S.; Rowe, P.M.; Asencio, V.; Carrasco, J.; Alfonso, J.A.; et al. Black Carbon Footprint of Human Presence in Antarctica. Nat. Commun. 2022, 13, 984. [Google Scholar] [CrossRef] [PubMed]
- Munari, C.; Infantini, V.; Scoponi, M.; Rastelli, E.; Corinaldesi, C.; Mistri, M. Microplastics in the Sediments of Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 2017, 122, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.; Clark, M.; Thompson, R.; Hughes, K.A. Microplastics in Marine Sediments near Rothera Research Station, Antarctica. Mar. Pollut. Bull. 2018, 133, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhao, N.; Liu, W.; Guo, R.; Jin, H. Occurrence of Microplastics in Antarctic Fishes: Abundance, Size, Shape, and Polymer Composition. Sci. Total Environ. 2023, 903, 166186. [Google Scholar] [CrossRef] [PubMed]
- Citterich, F.; Lo Giudice, A.; Azzaro, M. A Plastic World: A Review of Microplastic Pollution in the Freshwaters of the Earth’s Poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef] [PubMed]
Particle Types | Major Elements | Structure and Morphology | Size | Samples |
---|---|---|---|---|
Biological | O, SI, Al | Amorphous, mainly diatoms | >500 nm | D |
Mineral dust | O, Na, Si, Al, Ca, P, K, Mg, Fe | Crystalline and amorphous, irregular shapes with sharp edges | >10 nm | All samples |
S-rich | Mainly S, minor Cl, Si | Amorphous, sponge-like morphology | 50–150 nm | All samples, abundant in D |
Sea salt | Na, Cl, S, Mg | Crystalline, mainly cubic | >200 nm | D |
Soot | Mainly C and O and traces of S, Ca, K, Pb, Zn | Chain-like aggregates of nearly spherical carbon nanoparticles; onion-like nanostructure of graphitic layers | 10–100 nm | A, B |
Fly ash | Mainly C, Si, Al, and Fe and contributions from P, Mg, Ca, and K | Amorphous, spherical shape | 50–300 nm | A, B, C, E |
Mixing state of individual particles | C, O, Na, Si, Al, Ca, P, K, Mg, Fe | Crystalline and amorphous, aggregates of fly ash, soot, and mineral dust. Core-shell and complex morphology | >100 nm | A, B, C, E |
Ti/Fe oxide nanoparticles | Ti, Fe, O | Crystalline, isolated or aggregated | 5–100 nm | A, B, C, E |
Cd oxide nanoparticles | Cd, O | Crystalline, isolated | 50–100 nm | A, B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riboni, N.; Ribezzi, E.; Nasi, L.; Mattarozzi, M.; Piergiovanni, M.; Masino, M.; Bianchi, F.; Careri, M. Characterization of Small Micro-and Nanoparticles in Antarctic Snow by Electron Microscopy and Raman Micro-Spectroscopy. Appl. Sci. 2024, 14, 1597. https://doi.org/10.3390/app14041597
Riboni N, Ribezzi E, Nasi L, Mattarozzi M, Piergiovanni M, Masino M, Bianchi F, Careri M. Characterization of Small Micro-and Nanoparticles in Antarctic Snow by Electron Microscopy and Raman Micro-Spectroscopy. Applied Sciences. 2024; 14(4):1597. https://doi.org/10.3390/app14041597
Chicago/Turabian StyleRiboni, Nicolò, Erika Ribezzi, Lucia Nasi, Monica Mattarozzi, Maurizio Piergiovanni, Matteo Masino, Federica Bianchi, and Maria Careri. 2024. "Characterization of Small Micro-and Nanoparticles in Antarctic Snow by Electron Microscopy and Raman Micro-Spectroscopy" Applied Sciences 14, no. 4: 1597. https://doi.org/10.3390/app14041597