Identification of Adulterants in Chili Powder Based on the Histogram of Oriented Gradients Algorithm by Using an Electronic Nose
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Odor Feature Extraction Based on HOG
2.2. Feature Dataset Construction
2.3. Identification Model of Adulterants
3. Experiment
3.1. Materials
3.2. Electronic Nose System
3.3. Experimental Procedure
- (i)
- Randomly select one sample, put it in the sample container, and wait 2 min to allow its gas to emit and fill the container;
- (ii)
- Turn on Pump 1 to transfer the sample odor into the gas detection chamber, and the pumping time is set as 10 s;
- (iii)
- Turn on Pump 2 to introduce ambient gas into the gas detection chamber for cleaning. After all the gas sensors return to their initial states, the detection of the next sample can be started.
4. Results
4.1. E-Nose Response Signal
4.2. Signal Pre-Processing
5. Discussion
5.1. Comparison of Different Odor Features
5.2. SVM Classification Results
5.3. AlexNet Identification Results
6. Conclusions
- (1)
- Extracting odor features using the HOG algorithm could increase the distinguishability of the features, which is beneficial for subsequent pattern recognition;
- (2)
- Efficient identification of the adulterant could be better realized by using the as-proposed HOG+SVM approach than with a neural network model such as AlexNet;
- (3)
- The identification of adulterant content is relatively more difficult than the category identification, which may be solved by improving the performance of the E-nose system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, J.B.; Mani, J.S.; Walsh, K.B.; Naiker, M. Infrared spectroscopy for the quality assessment of habanero chilli: A proof-of-concept study. Food Meas. 2023, 17, 1764–1774. [Google Scholar] [CrossRef]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control Release 2014, 196, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Genualdi, S.; MacMahon, S.; Robbins, K.; Farris, S.; Shyong, N.; DeJager, L. Method development and survey of Sudan I–IV in palm oil and chilli spices in the Washington, DC, area. Food Addit. Contam. Part A Chem. 2016, 33, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Monago-Maraña, O.; Eskildsen, C.E.; de la Peña, A.M.; Galeano-Díaz, T.; Wold, J.P. Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder. Microchem. J. 2020, 154, 104539. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Eskildsen, C.E.; Afseth, N.K.; Galeano-Díaz, T.; de la Peña, A.M.; Wold, J.P. Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder. Food Chem. 2019, 274, 187–193. [Google Scholar] [CrossRef]
- Sarkar, T.; Choudhury, T.; Bansal, N.; Arunachalaeshwaran, V.R.; Khayrullin, M.; Shariati, M.A.; Lorenzo, J.M. Artificial Intelligence Aided Adulteration Detection and Quantification for Red Chilli Powder. Food Anal. Methods 2023, 16, 721–748. [Google Scholar] [CrossRef]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Herb and spice fraud; the drivers, challenges and detection. Food Control 2018, 88, 85–97. [Google Scholar] [CrossRef]
- Dhanya, K.; Syamkumar, S.; Siju, S.; Sasikumar, B. SCAR markers for adulterant detection in ground chilli. Br. Food J. 2011, 113, 656–668. [Google Scholar] [CrossRef]
- Ndlovu, P.F.; Magwaza, L.S.; Tesfay, S.Z.; Mphahlele, R.R. Destructive and rapid non-invasive methods used to detect adulteration of dried powdered horticultural products: A review. Food Res. Int. 2022, 157, 111198. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Cruz-Tirado, J.P.; Barbin, D.F. Nontargeted analytical methods as a powerful tool for the authentication of spices and herbs: A review. Compr. Rev. Food. Sci. Food Saf. 2019, 18, 670–689. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Saleem, Z.; Ahmad, M.; Sohaib, A.; Ayaz, H.; Mazzara, M.; Raza, R.A. Hyperspectral imaging-based unsupervised adulterated red chili content transformation for classification: Identification of red chili adulterants. Neural Comput. Appl. 2021, 33, 14507–14521. [Google Scholar] [CrossRef]
- Peng, Z.; Zhao, Y.; Yin, J.; Peng, P.; Ba, F.; Liu, X.; Guo, Y.; Rong, Q.; Zhang, Y. A Comprehensive Evaluation Model for Optimizing the Sensor Array of Electronic Nose. Appl. Sci. 2023, 13, 2338. [Google Scholar] [CrossRef]
- Modupalli, N.; Naik, M.; Sunil, C.K.; Natarajan, V. Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci. Technol. 2021, 108, 133–147. [Google Scholar] [CrossRef]
- Chilo, J.; Pelegri-Sebastia, J.; Cupane, M.; Sogorb, T. E-nose application to food industry production. IEEE Instrum. Meas. Mag. 2016, 19, 27–33. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, F.; Wang, Q.; Ou, S.; Tan, L.; Gu, F. The effect of cryogenic grinding and hammer milling on the flavour quality of ground pepper (Piper nigrum L.). Food Chem. 2013, 141, 3402–3408. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, Y.; Rong, Q.; Yang, Z.; Yin, J.; Peng, Z. Rapid odor recognition based on relief algorithm using electronic nose and its application in fruit identification and classification. J. Food Meas. Charact. 2022, 16, 2422–2433. [Google Scholar] [CrossRef]
- Heidarbeigi, K.; Mohtasebi, S.S.; Foroughirad, A.; Ghasemi-Varnamkhasti, M.; Rafiee, S.; Rezaei, K. Detection of adulteration in saffron samples using electronic nose. Int. J. Food Prop. 2015, 18, 1391–1401. [Google Scholar] [CrossRef]
- Jia, P.; Huang, T.; Wang, L.; Duan, S.; Yan, J.; Wang, L. A novel pre-processing technique for original feature matrix of electronic nose based on supervised locality preserving projections. Sensors 2016, 16, 1019. [Google Scholar] [CrossRef]
- Noh, H.W.; Jang, Y.; Park, H.D.; Kim, D.; Choi, J.H.; Ahn, C.G. A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions. Sens. Actuator B Chem. 2023, 390, 133965. [Google Scholar] [CrossRef]
- Kalidoss, R.; Umapathy, S.; Thirunavukkarasu, U.R. A breathalyzer for the assessment of chronic kidney disease patients’ breathprint: Breath flow dynamic simulation on the measurement chamber and experimental investigation. Biomed. Signal Process. Control 2021, 70, 103060. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, W.; Gu, S.; Wang, Y.; Wang, J. Evaluation of trunk borer infestation duration using MOS E-nose combined with different feature extraction methods and GS-SVM. Comput. Electron. Agric. 2020, 170, 105293. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, Y.; Peng, Z.; Ba, F.; Peng, P.; Liu, X.; Rong, Q.; Guo, Y.; Zhang, Y. Rapid Identification Method for CH4/CO/CH4-CO Gas Mixtures Based on Electronic Nose. Sensors 2023, 23, 2975. [Google Scholar] [CrossRef]
- Rahimzadeh, H.; Sadeghi, M.; Ghasemi-Varnamkhasti, M.; Mireei, S.A.; Tohidi, M. On the feasibility of metal oxide gas sensor based electronic nose software modification to characterize rice ageing during storage. J. Food Eng. 2019, 245, 1–10. [Google Scholar] [CrossRef]
- Chen, D.; Wang, B.; Zhang, T.; Chang, Z. Towards accuracy recognition and content estimation of typical pesticides in groundwater via electronic nose. Sens. Actuator A Phys. 2023, 362, 114642. [Google Scholar] [CrossRef]
- Chen, K.; Liu, L.; Nie, B.; Lu, B.; Fu, L.; He, Z.; Li, W.; Pi, X.; Liu, H. Recognizing lung cancer and stages using a self-developed electronic nose system. Comput. Biol. Med. 2021, 131, 104294. [Google Scholar] [CrossRef]
- Han, L.; Chen, M.; Li, Y.; Wu, S.; Zhang, L.; Tu, K.; Pan, L.; Wu, J.; Song, L. Discrimination of different oil types and adulterated safflower seed oil based on electronic nose combined with gas chromatography-ion mobility spectrometry. J. Food Compos. Anal. 2022, 114, 104804. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic nose feature extraction methods: A review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Avian, C.; Mahali, M.I.; Putro, N.A.S.; Prakosa, S.W.; Leu, J.S. Fx-Net and PureNet: Convolutional Neural Network architecture for discrimination of Chronic Obstructive Pulmonary Disease from smokers and healthy subjects through electronic nose signals. Comput. Biol. Med. 2022, 148, 105913. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, B.; Yin, C.; Li, Z.; Yu, Y. Performance improvement: A lightweight gas information classification method combined with an electronic nose system. Sens. Actuator B Chem. 2023, 396, 134551. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, S.; Yin, C.; Li, Z.; Shi, Y. An adaptive learning method for the fusion information of electronic nose and hyperspectral system to identify the egg quality. Sens. Actuator A Phys. 2022, 346, 113824. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Peyraut, F.; Planche, M.; Ilavsky, J.; Liao, H.; Montavon, G.; Lasalle, A.; Allimant, A. Parametric Analysis and Modeling for the Porosity Prediction in Suspension Plasma-Sprayed Coatings. J. Therm. Spray Technol. 2020, 29, 51–59. [Google Scholar] [CrossRef]
- Kapoor, R.; Gupta, R.; Jha, S.; Kumar, R. Detection of power quality event using histogram of oriented gradients and support vector machine. Measurement 2018, 120, 52–75. [Google Scholar] [CrossRef]
- Tomar, D.; Agarwal, S. Twin Support Vector Machine: A review from 2007 to 2014. Egypt. Inform. J. 2015, 16, 55–69. [Google Scholar] [CrossRef]
- Ba, F.; Peng, P.; Zhang, Y.; Zhao, Y. Classification and Identification of Contaminants in Recyclable Containers Based on a Recursive Feature Elimination-Light Gradient Boosting Machine Algorithm Using an Electronic Nose. Micromachines 2023, 14, 2047. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhao, C.H.; Huang, J.; Zhao, B. LaMnO3–Ni0.75Mn2.25O4 Supported Bilayer NTC Thermistors. J. Am. Ceram. Soc. 2014, 97, 1016–1019. [Google Scholar] [CrossRef]
- John Lu, Z.Q. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. J. R. Stat. Soc. Ser. A Stat. Soc. 2010, 173, 693–694. [Google Scholar] [CrossRef]
- Mahmodi, K.; Mostafaei, M.; Mirzaee-Ghaleh, E. Detection and classification of diesel-biodiesel blends by LDA, QDA and SVM approaches using an electronic nose. Fuel 2019, 258, 116114. [Google Scholar] [CrossRef]
- Anwar, H.; Anwar, T.; Murtaza, S. Review on food quality assessment using machine learning and electronic nose system. Biosens. Bioelectron. X 2023, 14, 100365. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Urbaniak, I.; Wolter, M. Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105582. [Google Scholar] [CrossRef]
Sample Name | Chili Powder (wt%) | Adulterant and Its Content (wt%) |
---|---|---|
C-pure | 100 | -- |
C-A15 | 85 | Almond Shell Powder, 15 |
C-A30 | 70 | Almond Shell Powder, 30 |
C-A45 | 55 | Almond Shell Powder, 45 |
C-B15 | 85 | Red Beetroot Powder, 15 |
C-B30 | 70 | Red Beetroot Powder, 30 |
C-B45 | 55 | Red Beetroot Powder, 45 |
C-T15 | 85 | Tomato Peel Powder, 15 |
C-T30 | 70 | Tomato Peel Powder, 30 |
C-T45 | 55 | Tomato Peel Powder, 45 |
Sensor No. | Main Detected Target Gas |
---|---|
S1 | VOCs |
S2 | Aldehydes, hydrogen sulfide |
S3 | VOCs, carbon monoxide, ammonia |
S4 | Benzene, methylbenzene, ethylene |
S5 | Aldehydes, olefin |
S6 | Air quality control, acetic acid, acetone |
S7 | Alkane, ethanol, acetone |
S8 | Aldehydes, ethylbenzene, methane |
S9 | Air quality control, hydrogen |
S10 | Ethanol, ammonia, hydrogen sulfide |
Datasets | HOG | SVM | Accuracy | Std | |||
---|---|---|---|---|---|---|---|
Cell Size | Block Size | Kernel Functions | C | γ | |||
I | 10 | 1 | RBF | 32.0 | 0.031 | 0.983 | 0.0136 |
I-ca | 8 | 2 | Sigmoid | 2.0 | 2.0 | 0.942 | 0.0204 |
I-cb | 12 | 1 | RBF | 0.125 | 8.0 | 0.933 | 0.0333 |
I-ct | 4 | 1 | RBF | 11.314 | 90.510 | 0.950 | 0.0486 |
Item | Parameters |
---|---|
CPU | Core(TM) i9-12900H, 2.50 GHz |
RAM | 16.0 GB, 3200 MHz |
GPU | NVIDIA GeForce RTX 3060 Laptop GPU 6 GB |
Operating System | Windows 11 |
Configuration | Parameters |
---|---|
Input Image | 224 × 224 Pixels, PNG |
Epoch | 300 |
Batch Size | 2 |
Optimizer | Adam (adaptive moment estimation) |
Learning Rate | 0.0002 |
Datasets | Identification Accuracy | Identification Time | ||
---|---|---|---|---|
HOG+SVM | AlexNet | HOG+SVM | AlexNet | |
I | 98.3% | 91.6% | 7.24 s | 11.36 s |
I-ca | 94.2% | 83.3% | 3.50 s | 5.06 s |
I-cb | 93.3% | 79.16% | 3.52 s | 5.58 s |
I-ct | 95.0% | 87.50% | 4.12 s | 5.13 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, P.; Ba, F.; Zhang, Y.; Jiang, F.; Zhao, Y. Identification of Adulterants in Chili Powder Based on the Histogram of Oriented Gradients Algorithm by Using an Electronic Nose. Appl. Sci. 2024, 14, 1007. https://doi.org/10.3390/app14031007
Peng P, Ba F, Zhang Y, Jiang F, Zhao Y. Identification of Adulterants in Chili Powder Based on the Histogram of Oriented Gradients Algorithm by Using an Electronic Nose. Applied Sciences. 2024; 14(3):1007. https://doi.org/10.3390/app14031007
Chicago/Turabian StylePeng, Peng, Fushuai Ba, Yafei Zhang, Feiyang Jiang, and Yongli Zhao. 2024. "Identification of Adulterants in Chili Powder Based on the Histogram of Oriented Gradients Algorithm by Using an Electronic Nose" Applied Sciences 14, no. 3: 1007. https://doi.org/10.3390/app14031007
APA StylePeng, P., Ba, F., Zhang, Y., Jiang, F., & Zhao, Y. (2024). Identification of Adulterants in Chili Powder Based on the Histogram of Oriented Gradients Algorithm by Using an Electronic Nose. Applied Sciences, 14(3), 1007. https://doi.org/10.3390/app14031007