Modeling the Conditions of Occurrence and State of Radial Cracks in Rock Specimens Under Axial Compression with Lateral Pressure
Abstract
:1. Introduction
2. Methodology and Results
2.1. Methodology
2.2. Unconfined Uniaxial Compression
2.3. Effect of Lateral Pressure on the Thickness of a Layer with Radial Cracks
3. Discussion
3.1. Consistency with Examples from Previous Studies
3.2. The Effect of a Sharp Decrease in the Degree of Failure of the Surface Layer Depending on the Poisson’s Ratio and Lateral Pressure
3.3. Axial Compression Without Lateral Pressure
3.4. Potential Applications and Developments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Example Number | MPa | MPa | n | MPa | s | MPa | ||
---|---|---|---|---|---|---|---|---|
1 | 36 | 3 | 0.3 | 0.429 | 15.43 | 0 | 0 | 0.837 |
2 | 36 | 3 | 0.3 | 0.429 | 15.43 | 0.2 | 7.2 | 0.447 |
3 | 36 | 3 | 0.3 | 0.429 | 15.43 | 0.3 | 10.8 | 0.251 |
4 | 36 | 5 | 0.3 | 0.429 | 15.43 | 0 | 0 | 0.755 |
5 | 36 | 5 | 0.3 | 0.429 | 15.43 | 0.2 | 7.2 | 0.433 |
6 | 36 | 5 | 0.3 | 0.429 | 15.43 | 0.3 | 10.8 | 0.227 |
7 | 36 | 8 | 0.3 | 0.429 | 15.43 | 0 | 0 | 0.659 |
8 | 36 | 8 | 0.3 | 0.429 | 15.43 | 0.2 | 7.2 | 0.351 |
9 | 36 | 8 | 0.3 | 0.429 | 15.43 | 0.3 | 10.8 | 0.198 |
10 | 36 | 3 | 0.25 | 0.333 | 12 | 0 | 0 | 0.800 |
11 | 36 | 3 | 0.25 | 0.333 | 12 | 0.2 | 7.2 | 0.320 |
12 | 36 | 3 | 0.25 | 0.333 | 12 | 0.3 | 10.8 | 0.080 |
13 | 36 | 5 | 0.25 | 0.333 | 12 | 0 | 0 | 0.706 |
14 | 36 | 5 | 0.25 | 0.333 | 12 | 0.2 | 7.2 | 0.282 |
15 | 36 | 5 | 0.25 | 0.333 | 12 | 0.3 | 10.8 | 0.071 |
16 | 36 | 8 | 0.25 | 0.333 | 12 | 0 | 0 | 0.600 |
17 | 36 | 8 | 0.25 | 0.333 | 12 | 0.2 | 7.2 | 0.240 |
18 | 36 | 8 | 0.25 | 0.333 | 12 | 0.3 | 10.8 | 0.060 |
19 | 36 | 3 | 0.2 | 0.25 | 9 | 0 | 0 | 0.750 |
20 | 36 | 3 | 0.2 | 0.25 | 9 | 0.2 | 7.2 | 0.150 |
21 | 36 | 3 | 0.2 | 0.25 | 9 | 0.25 | 9.0 | 0 |
22 | 36 | 5 | 0.2 | 0.25 | 9 | 0 | 0 | 0.643 |
23 | 36 | 5 | 0.2 | 0.25 | 9 | 0.2 | 7.2 | 0.129 |
24 | 36 | 5 | 0.2 | 0.25 | 9 | 0.25 | 9.0 | 0 |
25 | 36 | 8 | 0.2 | 0.25 | 9 | 0 | 0 | 0.529 |
26 | 36 | 8 | 0.2 | 0.25 | 9 | 0.2 | 7.2 | 0.106 |
27 | 36 | 8 | 0.2 | 0.25 | 9 | 0.25 | 9.0 | 0 |
28 | 120 | 5 | 0.2 | 0.25 | 30 | 0 | 0 | 0.857 |
29 | 120 | 5 | 0.2 | 0.25 | 30 | 0.1 | 12 | 0.514 |
30 | 120 | 5 | 0.2 | 0.25 | 30 | 0.2 | 24 | 0.171 |
31 | 120 | 5 | 0.2 | 0.25 | 30 | 0.25 | 30 | 0 |
32 | 120 | 10 | 0.2 | 0.25 | 30 | 0 | 0 | 0.75 |
33 | 120 | 10 | 0.2 | 0.25 | 30 | 0.1 | 12 | 0.45 |
34 | 120 | 10 | 0.2 | 0.25 | 30 | 0.2 | 24 | 0.15 |
35 | 120 | 10 | 0.2 | 0.25 | 30 | 0.25 | 30 | 0 |
References
- Bieniawski, Z.T. Engineering classification of jointed rock masses. Trans. South. Afr. Inst. Civ. Eng. 1973, 15, 335–344. Available online: https://journals.co.za/doi/pdf/10.10520/AJA10212019_17397 (accessed on 12 May 2024).
- Hoek, E.; Martin, C.D. Fracture initiation and propagation in intact rock—A review. J. Rock. Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Moss, A. Deformation-based support design for highly stressed ground with a focus on rockburst damage mitigation. J. Rock. Mech. Geotech. Eng. 2022, 14, 50–66. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, Y.; Zhang, M.; Han, L.; Pu, H.; Liu, J. On the Kaiser Effect of Rock under Cyclic Loading and Unloading Conditions: Insights from Acoustic Emission Monitoring. Energies 2019, 12, 3255. [Google Scholar] [CrossRef]
- Niu, G.; He, X.; Xu, H.; Dai, S. Development of Rock Classification Systems: A Comprehensive Review with Emphasis on Artificial Intelligence Techniques. Eng 2024, 5, 217–245. [Google Scholar] [CrossRef]
- Guo, W.-Y.; YU, F.-H.; Qiu, Y.; Zhao, T.-B.; Tan, Y.-L. Experimental Investigation of the Mechanical Behavior of Layer-Crack Specimens Under Cyclic Uniaxial Compression. Symmetry 2019, 11, 465. [Google Scholar] [CrossRef]
- Shekov, V. (Institute of Geology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia). Compression testing of rock specimens. Personal communication, 2024.
- Xie, W.Q.; Liu, X.L.; Zhang, X.P.; Liu, Q.S.; Wang, E.Z. A review of test methods for uniaxial compressive strength of rocks: Theory, apparatus and data processing. J. Rock. Mech. Geotech. Eng. 2024, in press. [Google Scholar] [CrossRef]
- Chen, S.; Tang, J.; Pan, Y. Constitutive Model of Uniaxial Compression for Rock (Coal) and Bursting Liability Index Based on the Structure Ensemble Dynamics Theory. Rock. Mech. Rock. Eng. 2024, 57, 10831–10848. [Google Scholar] [CrossRef]
- Yan, L.; Chang, J.; Manda, E.; Li, H.L.; Wang, Q.; Jing, Y.F. Rock crack initiation triggered by energy digestion. Sci. Rep. 2024, 14, 15222. [Google Scholar] [CrossRef]
- Yuan, S.; Du, B.; Shen, M. Experimental and numerical investigation of the mechanical properties and energy evolution of sandstone-concrete combined body. Sci. Rep. 2024, 14, 5214. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, L. Study on Rock Failure Criterion Based on Elastic Strain Energy Density. Appl. Sci. 2023, 13, 8435. [Google Scholar] [CrossRef]
- Stojković, N.; Perić, D.; Stojić, D.; Marković, N. New stress–strain model for concrete at high temperatures. Teh. Vjesn. 2017, 24, 863–868. [Google Scholar] [CrossRef]
- Shi, M.; Xu, G.; Zhao, J.; Xu, L.; Yuan, J.; Chen, M. The study on uniaxial compression constitutive model of shape memory alloy fiber-reinforced concrete. J. Build. Eng. 2024, 89, 109317. [Google Scholar] [CrossRef]
- Shekov, V.; Kolesnikov, G. Differential Energy Criterion for Brittle Fracture: Conceptualization and Application to the Analysis of Axial and Lateral Deformation in Uniaxial Compression of Rocks. Materials 2023, 16, 4875. [Google Scholar] [CrossRef] [PubMed]
- Arora, J.S.; Elwakeil, O.A.; Chahande, A.I.; Hsieh, C.C. Global optimization methods for engineering applications: A review. Struct. Multidiscip. Optim. 1995, 9, 137–159. [Google Scholar] [CrossRef]
- Yankelevsky, D.Z. The uniaxial compressive strength of concrete: Revisited. Mater. Struct. 2024, 57, 144. [Google Scholar] [CrossRef]
- Fakhimi, A.; Hemami, B. Axial splitting of rocks under uniaxial compression. Int. J. Rock. Mech. Min. Sci. 2015, 79, 124–134. [Google Scholar] [CrossRef]
- Liu, K.; Jin, S.; Rui, Y.; Huang, J.; Zhou, Z. Effect of Lithology on Mechanical and Damage Behaviors of Concrete in Concrete-Rock Combined Specimen. Mathematics 2022, 10, 727. [Google Scholar] [CrossRef]
- Cheng, Y.; Wong, L.N.Y. Microscopic characterization of tensile and shear fracturing in progressive failure in marble. J. Geophys. Res. Solid. Earth 2018, 123, 204–225. [Google Scholar] [CrossRef]
- Morgan, S.P.; Johnson, C.A.; Einstein, H.H. Cracking processes in Barre granite: Fracture process zones and crack coalescence. Int. J. Fract. 2013, 180, 177–204. [Google Scholar] [CrossRef]
- Goldsmith, W.; Sackman, J.L.; Ewerts, C. Static and dynamic fracture strength of Barre granite. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 1976, 13, 303–309. [Google Scholar] [CrossRef]
- Jin, Y.; He, C.; Yao, C.; Sun, Z.; Wang, J.; Zhang, X.; Yang, J.; Jiang, Q.; Zhou, C. Experimental and numerical simulation study on the evolution of mechanical properties of granite after thermal treatment. Comput. Geotech. 2024, 172, 106464. [Google Scholar] [CrossRef]
- Olovyanny, A.G. Lateral earth pressure in rock mass. J. Min. Inst. 2010, 185, 141–147. (In Russian). Available online: https://cyberleninka.ru/article/n/bokovoy-raspor-v-massive-gornyh-porod (accessed on 12 May 2024).
- Khomenko, O.; Kononenko, M.; Bilegsaikhan, J. Classification of theories about rock pressure. Solid State Phenom. 2018, 277, 157–167. [Google Scholar] [CrossRef]
- Wang, H.; Dyskin, A.; Pasternak, E.; Dight, P. Possible mechanism of spallation in rock samples under uniaxial compression. Eng. Fract. Mech. 2022, 269, 108577. [Google Scholar] [CrossRef]
- Fadhil, A.I.; Al-Adly, A.I.F.; Fattah, M.Y. Estimation of uniaxial compressive and indirect tensile strengths of intact rock from Schmidt hammer rebound number. J. Mech. Behav. Mater. 2023, 32, 20220255. [Google Scholar] [CrossRef]
- Fener, M.; Kahraman, S.; Bilgil, A.; Gunaydin, O. A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock. Mech. Rock. Eng. 2005, 38, 329–343. [Google Scholar] [CrossRef]
- de Alencar, A.T.S.; Muñiz-Menéndez, M.; Galindo, R.A. Ring Test: A New Interpretation to Estimate Tensile Strength of Rock. Rock. Mech. Rock. Eng. 2024, 57, 8911–8921. [Google Scholar] [CrossRef]
- Qiao, Q.; Nemcik, J.; Porter, I.; Baafi, E. Laboratory investigation of support mechanism of thin spray-on liner for pillar reinforcement. Géotechnique Lett. 2014, 4, 317–321. [Google Scholar] [CrossRef]
- Esterhuyse, J.C.; Malan, D.F. Simulating pillar reinforcement using a displacement discontinuity boundary element code. J. South. Afr. Inst. Min. Metall. 2023, 123, 211–222. [Google Scholar] [CrossRef]
- Le Bron, K.B.; Gardner, L.J.; van Zyl, J. Beyond the empirical pillar design method: The strain criterion and the pillar load inversion concepts. J. South. Afr. Inst. Min. Metall. 2024, 124, 293–302. [Google Scholar] [CrossRef]
- Zheng, Q.; Qian, J.; Zhang, H.; Chen, Y.; Zhang, S. Velocity tomography of cross-sectional damage evolution along rock longitudinal direction under uniaxial loading. Tunn. Undergr. Space Technol. 2024, 143, 105503. [Google Scholar] [CrossRef]
- Tian, J.; Kang, H.; Zhang, D.; Fan, G.; Zheng, X. Study of the Constraint Pillar Test and the Application in Gob-Side Entry Retaining. Appl. Sci. 2024, 14, 8673. [Google Scholar] [CrossRef]
- Golewski, G.L. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection—A Review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Caliendo, C.; Genovese, G.; Russo, I. A Simultaneous Analysis of the User Safety and Resilience of a Twin-Tube Road Tunnel. Appl. Sci. 2022, 12, 3357. [Google Scholar] [CrossRef]
- Guo, W.; Ma, X.; Wen, Y.; Cao, X. Stress Evolution and Rock Burst Prevention in Triangle Coal Pillars under the Influence of Penetrating Faults: A Case Study. Appl. Sci. 2024, 14, 8585. [Google Scholar] [CrossRef]
- Beßling, M.; Groh, M.; Koch, V.; Auras, M.; Orlowsky, J.; Middendorf, B. Repair and Protection of Existing Steel-Reinforced Concrete Structures with High-Strength, Textile-Reinforced Mortars. Buildings 2022, 12, 1615. [Google Scholar] [CrossRef]
- Carpinteri, A.l.; Lacidogna, G.; Pugno, N. Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng. Fract. Mech. 2007, 74, 273–289. [Google Scholar] [CrossRef]
- Niccolini, G.; Potirakis, S.M.; Lacidogna, G.; Borla, O. Criticality Hidden in Acoustic Emissions and in Changing Electrical Resistance during Fracture of Rocks and Cement-Based Materials. Materials 2020, 13, 5608. [Google Scholar] [CrossRef]
- Jing, G.; Marin Montanari, P.; Lacidogna, G. Study of Time–Frequency Domain of Acoustic Emission Precursors in Rock Failure During Uniaxial Compression. Signals 2024, 5, 105–117. [Google Scholar] [CrossRef]
- Huang, J.; Wei, X.; Zheng, Z.; Su, X.; Zuo, J. Linear fractal evolution characteristics of rock crack distributions during loading process. Sci. Rep. 2024, 14, 18303. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.L.; Ma, Q.; Lacidogna, G.; Pan, P.Z.; Wang, Z.F.; Su, G.S. Experimental study on the failure characteristic and mechanism of granite time-delayed rockburst under true triaxial condition. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 164. [Google Scholar] [CrossRef]
- Luo, L.; Rui, Y.; Qiu, J.; Li, C.; Liu, X.; Chen, C. Exploring Dynamic Spalling Behavior in Rock–Shotcrete Combinations: A Theoretical and Numerical Investigation. Mathematics 2024, 12, 1346. [Google Scholar] [CrossRef]
- Chen, J.; Tong, J.; Rui, Y.; Cui, Z.; Pu, Y.; Du, J.; Derek, B.A. Step-path failure mechanism and stability analysis of water-bearing rock slopes based on particle flow simulation. Theor. Appl. Fract. Mech. 2024, 131, 104370. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Zhong, W.; Fan, L. A Real-Time Study on the Cracking Characteristics of Polyvinyl Alcohol Fiber-Reinforced Geopolymer Composites Under Splitting Tensile Load Based on High-Speed Digital Image Correlations. Buildings 2024, 14, 1986. [Google Scholar] [CrossRef]
- Guo, W.B.; Wang, B.B.; Tan, Y.; Zhao, G.B.; Bai, E.H.; Guo, M.J.; Wen, P.; Ma, Z.B.; Yang, W.Q.; Wu, D.T. Experimental study on failure characteristics and rheological properties of pillar-like rock samples with different shapes. Sci. Rep. 2023, 13, 22393. [Google Scholar] [CrossRef]
- Nasyrov, R.S.; Tretyak, A.V.; Neugomonov, S.S.; Mazhitov, A.M. Developing a technology of driving and supporting mine workings in tectonically weakened rock zones. Gorn. Promyshlennost. 2024, 3, 126–130. (In Russian) [Google Scholar] [CrossRef]
- Ahrami, O.; Javaheri Koupaei, H.; Ahangari, K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Min. Sci. Technol. 2024, 9, 116–133. [Google Scholar] [CrossRef]
- Meng, F.; Wong, L.N.Y.; Zhou, H. Rock Brittleness Indices and Their Applications to Different Fields of Rock Engineering: A Review. J. Rock. Mech. Geotech. Eng. 2021, 13, 221–247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekov, V.; Kolesnikov, G. Modeling the Conditions of Occurrence and State of Radial Cracks in Rock Specimens Under Axial Compression with Lateral Pressure. Appl. Sci. 2024, 14, 11552. https://doi.org/10.3390/app142411552
Shekov V, Kolesnikov G. Modeling the Conditions of Occurrence and State of Radial Cracks in Rock Specimens Under Axial Compression with Lateral Pressure. Applied Sciences. 2024; 14(24):11552. https://doi.org/10.3390/app142411552
Chicago/Turabian StyleShekov, Vitali, and Gennady Kolesnikov. 2024. "Modeling the Conditions of Occurrence and State of Radial Cracks in Rock Specimens Under Axial Compression with Lateral Pressure" Applied Sciences 14, no. 24: 11552. https://doi.org/10.3390/app142411552
APA StyleShekov, V., & Kolesnikov, G. (2024). Modeling the Conditions of Occurrence and State of Radial Cracks in Rock Specimens Under Axial Compression with Lateral Pressure. Applied Sciences, 14(24), 11552. https://doi.org/10.3390/app142411552