Hybrid Multi-Strategy Improved Butterfly Optimization Algorithm
Abstract
:1. Introduction
2. Butterfly Optimization Algorithm
3. Improvement of the BOA
3.1. Subsection Optimization of Initial Population Positions
3.2. Lévy Flight Strategy
3.3. Sine Cosine Search Strategy
3.4. Simulated Annealing Algorithm
3.5. IBOA Steps
3.6. Time Complexity
4. Simulations and Analyses
4.1. Improve Strategy Effectiveness Analysis
4.2. Analysis of Function Optimization Results
4.3. Convergence Analysis
4.4. Analysis of Wilcoxon Rank Sum Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. Publ. IEEE Neural Netw. Counc. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Zhai, R.; Xiao, P.; Shu, D.; Sun, Y.; Jiang, M. Application of Improved Butterfly Optimization Algorithm in Mobile Robot Path Planning. Electronics 2023, 12, 3424. [Google Scholar] [CrossRef]
- Mazaheri, H.; Goli, S.; Nourollah, A. Path planning in three-dimensional space based on butterfly optimization algorithm. Sci. Rep. 2024, 14, 2332. [Google Scholar] [CrossRef]
- Jin, Z.; Sun, Y. Bearing Fault Diagnosis Based on VMD Fuzzy Entropy and Improved Deep Belief Networks. J. Vib. Eng. Technol. 2022, 11, 577–587. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y.; Rahnama, K. Diagnosing the spores of tomato fungal diseases using microscopic image processing and machine learning. Multimed. Tools Appl. 2024, 83, 67283–67301. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Al-Betar, M.A.; Abasi, A.K.; Awadallah, M.A.; Doush, I.A.; Alyasseri ZA, A.; Alomari, O.A. Recent Advances in Butterfly Optimization Algorithm, Its Versions and Applications. Arch. Comput. Methods Eng. State Art Rev. 2022, 30, 21–22. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Yang, J. Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization Problems. Entropy 2022, 24, 525. [Google Scholar] [CrossRef]
- He, K.; Zhang, Y.; Wang, Y.K.; Zhou, R.H.; Zhang, H.Z. EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems. Alex. Eng. J. 2024, 87, 543–573. [Google Scholar] [CrossRef]
- Ding, Y.; Xia, Q.; Zhang, R.; Li, S. Review of literature survey of butterfly optimization algorithm. Sci. Technol. Eng. 2023, 23, 2705–2716. (In Chinese) [Google Scholar]
- Lu, Z.; Zhang, J. An Enhanced Dung Beetle Optimization Algorithm for Global Optimization. Curr. J. Appl. Sci. Technol. 2023, 42, 9–22. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Jiao, C.; Yu, K.; Zhou, Q. An Opposition-Based Learning Adaptive Chaotic Particle Swarm Optimization Algorithm. J. Bionic Eng. 2024, 21, 3076–3097. [Google Scholar] [CrossRef]
- Wu, F.; Li, S.; Zhang, J.; Lv, D.; Wu, X.; Li, M. An Improved Weighted Differential Evolution Algorithm Based on the Chaotic Mapping and Dynamic Reverse Learning Strategy. J. Phys. Conf. Ser. 2022, 2400, 012054. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Hussein, A.; Ahmed, F.; Salah, K. An effective hybrid approach based on arithmetic optimization algorithm and sine cosine algorithm for integrating battery energy storage system into distribution networks. J. Energy Storage 2022, 49, 104154. [Google Scholar]
- Xiao, S.; Peng, P.; Zheng, P.; Wu, Z. A Hybrid Adaptive Simulated Annealing and Tempering Algorithm for Solving the Half-Open Multi-Depot Vehicle Routing Problem. Mathematics 2024, 12, 947. [Google Scholar] [CrossRef]
- Ran, L.; Di, B. Electric vehicle charging scheduling based on improved bald eagle algorithm. J. Phys. Conf. Ser. 2023, 2656, 012024. [Google Scholar]
- Yao, X.; Liu, Y. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D. Butterfly Optimization Algorithm Combining Sine Cosine and Iterative Chaotic Map with Infinite Collapses. Pattern Recognit. Artif. Intell. 2020, 33, 660–669. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; He, Q.; Du, N. Piecewise Weight and Mutation Opposition-Based Learning Butterfly OptimizationAlgorithm. Comput. Eng. Appl. 2021, 57, 92–101. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, H.Q.; Peng, S.Y.; Zhou, Y.Q. Butterfly optimization algorithm based on convergence factor and salp swarm. Microelectron. Comput. 2021, 38, 28–34. (In Chinese) [Google Scholar] [CrossRef]
Number | Title 2 Function | Variable Range Values | Global Optimal Value |
---|---|---|---|
F1 | Sphere | [−100, 100] | 0 |
F2 | Schwefel2.22 | [−10, 10] | 0 |
F3 | Schwefel1.2 | [−100, 100] | 0 |
F4 | Schwefel2.21 | [−100, 100] | 0 |
F5 | Step | [−100, 100] | 0 |
F6 | Quartic | [−1.28, 1.28] | 0 |
F7 | Schwefel2.26 | [−500, 500] | −418.9829 D |
F8 | Rastrigin | [−5.12, 5.12] | 0 |
F9 | Ackley | [−32, 32] | 0 |
F10 | Griewank | [−600, 600] | 0 |
Function | Algorithm | Optimal Value | Average Value | Standard Deviation |
---|---|---|---|---|
F1 | IBOA | 0 | 0 | 0 |
BOA | 1.4878 × 10−7 | 2.4402 × 10−7 | 5.5853 × 10−8 | |
IBOA-1 | 9.1267 × 10−8 | 2.1207 × 10−7 | 4.747 × 10−8 | |
IBOA-2 | 2.3502 × 10−87 | 4.7501 × 10−66 | 2.2556 × 10−65 | |
IBOA-3 | 5.0304 × 10−284 | 1.1878 × 10−249 | 0 | |
IBOA-4 | 1.9111 × 10−11 | 3.1856 × 10−9 | 2.3931 × 10−9 | |
F2 | IBOA | 0 | 0 | 0 |
BOA | 3.8163 × 10−14 | 9.7811 × 10−12 | 2.9634 × 10−11 | |
IBOA-1 | 4.0197 × 10−15 | 1.6523 × 10−11 | 2.3754 × 10−11 | |
IBOA-2 | 2.1354 × 10−205 | 5.7688 × 10−173 | 0 | |
IBOA-3 | 5.6229 × 10−181 | 1.6621 × 10−120 | 1.1753 × 10−119 | |
IBOA-4 | 6.3567 × 10−7 | 4.049 × 10−6 | 1.126 × 10−6 | |
F3 | IBOA | 0 | 0 | 0 |
BOA | 1.1995 × 10−7 | 2.1382 × 10−7 | 4.4449 × 10−8 | |
IBOA-1 | 1.0164 × 10−7 | 2.2642 × 10−7 | 4.7077 × 10−8 | |
IBOA-2 | 2.4818 × 10−87 | 3.0135 × 10−67 | 1.7174 × 10−66 | |
IBOA-3 | 1.365 × 10−284 | 9.8693 × 10−250 | 0 | |
IBOA-4 | 6.476 × 10−9 | 5.825 × 10−8 | 2.787 × 10−8 | |
F4 | IBOA | 0 | 0 | 0 |
BOA | 3.5748 × 10−5 | 6.9172 × 10−5 | 1.2262 × 10−5 | |
IBOA-1 | 4.7552 × 10−5 | 6.8879 × 10−5 | 1.1012 × 10−5 | |
IBOA-2 | 1.4145 × 10−212 | 1.8653 × 10−192 | 0 | |
IBOA-3 | 2.2966 × 10−309 | 5.6237 × 10−270 | 0 | |
IBOA-4 | 1.7483 × 10−7 | 8.0464 × 10−7 | 3.095 × 10−7 | |
F5 | IBOA | 9.7965 × 10−10 | 4.3216 × 10−5 | 9.5949 × 10−5 |
BOA | 3.4381 | 4.3713 | 0.44399 | |
IBOA-1 | 3.3771 | 0.016502 | 0.0048471 | |
IBOA-2 | 1.5912 | 2.7275 | 0.63549 | |
IBOA-3 | 2.1359 | 4.0601 | 0.77525 | |
IBOA-4 | 9.1907 × 10−7 | 1.2461 × 10−3 | 2.5234 × 10−3 | |
F6 | IBOA | 3.6308 × 10−8 | 2.0451 × 10−5 | 1.8865 × 10−5 |
BOA | 0.00041255 | 0.0016045 | 0.00064071 | |
IBOA-1 | 0.00038958 | 0.0014505 | 0.0005137 | |
IBOA-2 | 5.0144 × 10−8 | 3.0865 × 10−5 | 2.9218 × 10−5 | |
IBOA-3 | 4.023 × 10−7 | 3.1476 × 10−5 | 3.1526 × 10−5 | |
IBOA-4 | 4.0126 × 10−6 | 8.0777 × 10−5 | 7.089 × 10−5 | |
F7 | IBOA | −12,569.4593 | −12,547.1233 | 27.4743 |
BOA | −5110.4061 | −3928.5789 | 317.0166 | |
IBOA-1 | −5510.3021 | −4488.0117 | 421.6456 | |
IBOA-2 | −7036.16 | −4764.2174 | 594.7845 | |
IBOA-3 | −5728.157 | −3759.8554 | 451.7682 | |
IBOA-4 | −12,569.4835 | −12,569.2966 | 0.37961 | |
F8 | IBOA | 0 | 0 | 0 |
BOA | 0 | 6.0982 × 10−12 | 2.2353 × 10−11 | |
IBOA-1 | 0 | 3.6709 × 10−12 | 8.1933 × 10−12 | |
IBOA-2 | 0 | 0 | 0 | |
IBOA-3 | 0 | 0 | 0 | |
IBOA-4 | 7.2021 × 10−11 | 1.5048 × 10−9 | 1.0752 × 10−9 | |
F9 | IBOA | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 |
BOA | 2.9769 × 10−5 | 4.9166 × 10−5 | 7.7772 × 10−6 | |
IBOA-1 | 3.3185 × 10−6 | 4.6771 × 10−6 | 6.6874 × 10−7 | |
IBOA-2 | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
IBOA-3 | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
IBOA-4 | 6.6504 × 10−8 | 8.2654 × 10−7 | 3.6639 × 10−7 | |
F10 | IBOA | 0 | 0 | 0 |
BOA | 2.1432 × 10−8 | 7.5599 × 10−8 | 4.2717 × 10−8 | |
IBOA-1 | 1.7504 × 10−8 | 7.0881 × 10−8 | 3.1355 × 10−8 | |
IBOA-2 | 0 | 0 | 0 | |
IBOA-3 | 0 | 0 | 0 | |
IBOA-4 | 1.1449 × 10−10 | 2.5761 × 10−9 | 1.6938 × 10−9 |
Function | Algorithm | Optimal Value | Worst Value | Average Value | Standard Deviation |
---|---|---|---|---|---|
F1 | IBOA | 0 | 0 | 0 | 0 |
BOA | 1.4878 × 10−7 | 4.4612 × 10−7 | 2.4402 × 10−7 | 5.5853 × 10−8 | |
PSO | 0.0070901 | 0.040186 | 0.018441 | 0.0065241 | |
SIBOA | 0 | 0 | 0 | 0 | |
PWMBOA | 0 | 0 | 0 | 0 | |
CFSSBOA | 9.6278 × 10−148 | 7.0809 × 10−90 | 1.504 × 10−91 | 1.0016 × 10−90 | |
F2 | IBOA | 0 | 0 | 0 | 0 |
BOA | 3.0092 × 10−15 | 1.0444 × 10−10 | 5.515 × 10−12 | 1.5167 × 10−11 | |
PSO | 0.30662 | 1.3457 | 0.53501 | 0.18852 | |
SIBOA | 7.2297 × 10−170 | 9.0327 × 10−157 | 4.7102 × 10−158 | 1.7459 × 10−157 | |
PWMBOA | 0 | 1.3399 × 10−5 | 2.6798 × 10−7 | 1.8949 × 10−6 | |
CFSSBOA | 1.4647 × 10−22 | 3.5006 × 10−9 | 7.037 × 10−11 | 4.95 × 10−10 | |
F3 | IBOA | 0 | 0 | 0 | 0 |
BOA | 1.1995 × 10−7 | 3.8247 × 10−7 | 2.1382 × 10−7 | 4.4449 × 10−8 | |
PSO | 0.60127 | 9.9668 | 1.9745 | 1.4246 | |
SIBOA | 0 | 0 | 0 | 0 | |
PWMBOA | 0 | 0 | 0 | 0 | |
CFSSBOA | 1.5661 × 10−131 | 1.8499 × 10−64 | 3.7058 × 10−66 | 2.6161 × 10−65 | |
F4 | IBOA | 0 | 0 | 0 | 0 |
BOA | 3.5748 ×10−5 | 9.2498 ×10−5 | 6.9172 × 10−5 | 1.2262 × 10−5 | |
PSO | 0.11773 | 0.99664 | 0.27003 | 0.14619 | |
SIBOA | 4.9814 × 10−178 | 4.7077 × 10−173 | 2.4259 × 10−174 | 0 | |
PWMBOA | 0 | 0 | 0 | 0 | |
CFSSBOA | 3.1176 × 10−76 | 9.7379 × 10−57 | 1.977 × 10−58 | 1.3768 × 10−57 | |
F5 | IBOA | 9.7965 × 10−10 | 0.00046189 | 4.3216 × 10−5 | 9.5949 ×10−5 |
BOA | 3.4381 | 5.2922 | 4.3713 | 0.44399 | |
PSO | 0.0092025 | 0.031153 | 0.016502 | 0.0048471 | |
SIBOA | 0.59594 | 1.3643 | 0.95436 | 0.15895 | |
PWMBOA | 2.1359 | 5.745 | 4.0601 | 0.77525 | |
CFSSBOA | 2.8042 ×10−5 | 0.0045236 | 0.0011309 | 0.00096006 | |
F6 | IBOA | 3.6308× 10−8 | 7.4089× 10−5 | 2.0451 × 10−5 | 1.8865 × 10−5 |
BOA | 0.00041255 | 0.0038854 | 0.0016045 | 0.00064071 | |
PSO | 0.016347 | 0.086173 | 0.04925 | 0.016063 | |
SIBOA | 1.2574 × 10−6 | 0.00016457 | 3.204 × 10−5 | 3.4709 × 10−5 | |
PWMBOA | 7.9534 × 10−7 | 7.3818 × 10−5 | 2.1097 × 10−5 | 1.9239 × 10−5 | |
CFSSBOA | 2.2182 × 10−06 | 0.00038427 | 0.00011991 | 9.2574 × 10−5 | |
F7 | IBOA | −12,569.4593 | −12,448.9448 | −12,547.1233 | 27.4743 |
BOA | −5110.4061 | −3576.605 | −3928.5789 | 317.0166 | |
PSO | −4115.5193 | −2551.9592 | −3242.5415 | 346.589 | |
SIBOA | −12,285.712 | −7986.9681 | −9830.8295 | 898.1468 | |
PWMBOA | −12,569.4865 | −9780.4795 | −11,605.3028 | 864.0931 | |
CFSSBOA | −12,569.4835 | −12,567.3264 | −12,569.2966 | 0.37961 | |
F8 | IBOA | 0 | 0 | 0 | 0 |
BOA | 0 | 1.5558 × 10−10 | 6.0982 × 10−12 | 2.2353 × 10−11 | |
PSO | 7.2816 | 60.3612 | 24.1695 | 10.5269 | |
SIBOA | 0 | 0 | 0 | 0 | |
PWMBOA | 0 | 0 | 0 | 0 | |
CFSSBOA | 0 | 0 | 0 | 0 | |
F9 | IBOA | 4.4409 × 10−16 | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 |
BOA | 2.9769 × 10−5 | 6.9054× 10−5 | 4.9166× 10−5 | 7.7772× 10−6 | |
PSO | 0.083137 | 5.4548 | 2.8906 | 0.78444 | |
SIBOA | 4.4409 × 10−16 | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
PWMBOA | 4.4409 × 10−16 | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
CFSSBOA | 4.4409 × 10−16 | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
F10 | IBOA | 0 | 0 | 0 | 0 |
BOA | 2.1432 × 10−8 | 2.5276 × 10−7 | 7.5599 × 10−8 | 4.2717 × 10−8 | |
PSO | 132.403 | 210.8344 | 180.0418 | 13.9491 | |
SIBOA | 0 | 0 | 0 | 0 | |
PWMBOA | 0 | 0 | 0 | 0 | |
CFSSBOA | 0 | 0 | 0 | 0 |
Function | IBOA | BOA | PSO | SIBOA | PWMBOA | CFSSBOA |
---|---|---|---|---|---|---|
F1 | 15.294 | 12.261 | 2.3235 | 12.53 | 18.911 | 12.6485 |
F2 | 15.5355 | 12.8045 | 2.27845 | 12.521 | 19.1 | 13.047 |
F3 | 42.7375 | 39.4865 | 15.7745 | 39.4415 | 59.995 | 39.7375 |
F4 | 15.0395 | 12.23 | 2.3733 | 12.3705 | 18.652 | 12.5055 |
F5 | 14.389 | 11.5475 | 2.2595 | 11.8115 | 18.2135 | 12.0475 |
F6 | 31.4935 | 28.432 | 10.3595 | 28.5615 | 43.485 | 28.8715 |
F7 | 18.9825 | 16.9365 | 4.4275 | 16.802 | 24.422 | 15.6975 |
F8 | 16.0525 | 15.5525 | 3.5334 | 13.3875 | 22.4415 | 16.1945 |
F9 | 15.7025 | 14.211 | 3.77885 | 13.352 | 22.0775 | 15.5895 |
F10 | 17.8185 | 16.015 | 5.6445 | 15.121 | 25.3055 | 17.717 |
Function | BOA | PSO | SIBOA | PWMBOA | CFSSBOA |
---|---|---|---|---|---|
F1 | 3.3111 × 10−20 | 3.3111 × 10−20 | NaN | NaN | 3.3111 × 10−20 |
F2 | 1.3493 × 10−16 | 1.3493 × 10−16 | 0.6466 | 4.4481 × 10−18 | 1.3493 × 10−16 |
F3 | 73.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 |
F4 | 3.3111 × 10−20 | 3.3111 × 10−20 | 3.3111 × 10−20 | NaN | 3.3111 × 10−20 |
F5 | 7.0661 × 10−18 | 5.4572 × 10−4 | 7.0661 × 10−18 | 7.0661 × 10−18 | 1.2019 × 10−16 |
F6 | 7.0661 × 10−18 | 7.0661 × 10−18 | 0.0041 | 0.2837 | 3.0946 × 10−13 |
F7 | 7.0661 × 10−18 | 7.0661 × 10−18 | 7.0661 × 10−18 | 6.2162 × 10−6 | 2.6537 × 10−13 |
F8 | 2.2575 × 10−16 | 3.3111 × 10−20 | NaN | NaN | NaN |
F9 | 3.3111 × 10−20 | 3.3111 × 10−20 | NaN | NaN | NaN |
F10 | 3.3111 × 10−20 | 3.3111 × 10−20 | NaN | NaN | NaN |
+/=/− | 10/0/0 | 10/0/0 | 5/4/1 | 4/5/1 | 7/3/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, P.; Huang, Q. Hybrid Multi-Strategy Improved Butterfly Optimization Algorithm. Appl. Sci. 2024, 14, 11547. https://doi.org/10.3390/app142411547
Cao P, Huang Q. Hybrid Multi-Strategy Improved Butterfly Optimization Algorithm. Applied Sciences. 2024; 14(24):11547. https://doi.org/10.3390/app142411547
Chicago/Turabian StyleCao, Panpan, and Qingjiu Huang. 2024. "Hybrid Multi-Strategy Improved Butterfly Optimization Algorithm" Applied Sciences 14, no. 24: 11547. https://doi.org/10.3390/app142411547
APA StyleCao, P., & Huang, Q. (2024). Hybrid Multi-Strategy Improved Butterfly Optimization Algorithm. Applied Sciences, 14(24), 11547. https://doi.org/10.3390/app142411547