Effect of the Storage Conditions on the Microbiological Quality and Selected Bioactive Compound Content in Fruit Mousses for Infants and Young Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Research Material
2.3. Microbiological Analysis
2.4. Determination of Mineral Content
2.5. Determination of Total Phenolic Content
2.6. Determination of Total Flavonoid Content
2.7. Determination of Vitamin C Content
2.8. Determination of Antioxidant Capacity
2.9. Statistical Analysis
3. Results
3.1. Microbiological Quality of Fresh and Stored Fruit Mousses
3.2. Content of Selected Macro- and Microminerals of Fresh and Stored Fruit Mousses
3.3. Content of Bioactive Compounds of Fresh and Stored Fruit Mousses
3.4. Antioxidant Capacity of Fresh and Stored Fruit Mousses
3.5. Relationships Between Studied Mousse Samples
3.5.1. Linear Correlation
3.5.2. Principal Component Analysis (PCA)
4. Discussion
5. Limitations of This Study and Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaczmarek, D.; Wójcik, M.; Kapuśniak, K. Assessment of Functional Properties of Vegetableand Fruit Mousses Enriched with a Fiber Preparationfrom Potato Starch. Zywn. Nauk. Technol. Ja 2023, 30, 284–299. [Google Scholar] [CrossRef]
- Stankiewicz, J.; Płotka, P. Evaluation of Selected Microbiological Quality Parameters of Fruit Mousses. Sci. J. Gdyn. Marit. Univ. 2019, 110, 32–39. [Google Scholar] [CrossRef]
- Westland, S.; Crawley, H. Fruit and Vegetable Based Purées in Pouches for Infants and Young Children. First Steps Nutrition Trust. 2018. Available online: https://www.firststepsnutrition.org/babyfood-composition (accessed on 7 November 2024).
- Żmudzińska, A.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K. Evaluation of Selected Antioxidant Parameters in Ready-to-Eat Food for Infants and Young Children. Nutrients 2023, 15, 3160. [Google Scholar] [CrossRef]
- Mielech, A.; Puścion-Jakubik, A.; Socha, K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients 2021, 13, 2358. [Google Scholar] [CrossRef]
- Qadri, O.S.; Yousuf, B.; Srivastava, F.Y. Fresh-Cut Fruits and Vegetables: Critical Factors Influencing Microbiology and Novel Approaches to Prevent Microbial Risks—A Review. Cogent Food Agric. 2015, 1, 1121606. [Google Scholar] [CrossRef]
- Toydemir, G.; Subasi, B.G.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, I.; Chekir, L.; Ghoul, M. Effect of Heat Treatment and Light Exposure on the Antioxidant Activity of Flavonoids. Processes 2020, 8, 1078. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wu, J.; Li, Y.; Deng, W.; Cao, K.; Li, Z.; Wang, L. Effect of Postharvest Cold Storage and Subsequent Shelf-Life on Fruit Quality and Endogenous Phytohormones in Nectarine Fruit. Postharvest Biol. Technol. 2024, 218, 113197. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20200308&from=EN (accessed on 25 November 2024).
- Purkiewicz, A.; Pietrzak-Fiećko, R. Antioxidant Properties of Fruit and Vegetable Whey Beverages and Fruit and Vegetable Mousses. Molecules 2021, 26, 3126. [Google Scholar] [CrossRef]
- Bansal, M.; Poonia, A.; Kolluri, S.R.P.; Bansal, M.; Kolluri, S.R.P. Introduction on Bioactive Compounds, Sources and their Potential Applications 1. In Bioactivecomponents: A Sustainable System for Good Health and Well-Being; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–26. [Google Scholar]
- Zhang, Y.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Maresca, P.; Ciccarone, R. The Effects of High Hydrostatic Pressure on the Polyphenols and Anthocyanins in Red Fruit Products. Procedia Food Sci. 2011, 1, 847–853. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees. Agronomy 2019, 9, 860. [Google Scholar] [CrossRef]
- Saarniit, K.; Lang, H.; Kuldjärv, R.; Laaksonen, O.; Rosenvald, S. The Stability of Phenolic Compounds in Fruit, Berry, and Vegetable Purees Based on Accelerated Shelf-Life Testing Methodology. Foods 2023, 12, 1777. [Google Scholar] [CrossRef]
- Dobrowolska-Iwanek, J.; Zagrodzki, P.; Galanty, A.; Fołta, M.; Kryczyk-Kozioł, J.; Szlósarczyk, M.; Rubio, P.S.; Saraiva de Carvalho, I.; Pasko, P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods 2022, 11, 371. [Google Scholar] [CrossRef]
- Zakrzewski, A.; Purkiewicz, A.; Jakuć, P.; Wiśniewski, P.; Sawicki, T.; Chajęcka-Wierzchowska, W.; Tańska, M. Effectiveness of Various Solvent-Produced Thyme (Thymus vulgaris) Extracts in Inhibiting the Growth of Listeria monocytogenes in Frozen Vegetables. NFS J. 2022, 29, 26–34. [Google Scholar] [CrossRef]
- Dioha, I.J.; Olugbemi, O.; Onuegbu, T.U.; Shahru, Z. Determination of Ascorbic Acid Content of Some Tropical Fruits by Iodometric Titration. Int. J. Biol. Chem. Sci. 2011, 5, 2180–2184. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Cheng, L.; Gu, Z.; Hua, D.; Qi, X.; Qian, H.; Wang, L. Effect of Extrusion on the Hydrophilic Antioxidant Capacity of Four Whole Grains. J. Food Nutr. Res. 2014, 2, 80–87. [Google Scholar] [CrossRef]
- Kempkes, M.; Simpson, R. Pulsed Electric Field (PEF) Processing of Fruit and Vegetables. In Proceedings of the 2018 IEEE International Power Modulator and High Voltage Conference (IPMHVC), Jackson, WY, USA, 3–7 June 2018; pp. 499–503. [Google Scholar]
- Zhou, W.; Sarpong, F.; Zhou, C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022, 11, 2874. [Google Scholar] [CrossRef]
- Pan, Z. Innovative Infrared Heating Technologies for Food and Agricultural Processing. Technol. Innov. 2020, 21, 1–16. [Google Scholar] [CrossRef]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of Modified Atmosphere Packaging as a Safety Approach to Fresh-Cut Fruits and Vegetables—A Review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Tobal, T.M.; Rodrigues, L.V. Effect of Storage on the Bioactive Compounds, Nutritional Composition and Sensory Acceptability of Pitanga Jams. Food Sci. Technol. 2019, 39, 581–587. [Google Scholar] [CrossRef]
- Kopjar, M.; Pichler, A.; Turi, J.; Pilizota, V. Influence of Trehalose Addition on Antioxidant Activity, Colour and Texture of Orange Jelly During Storage. Int. J. Food Sci. 2016, 51, 2640–2646. [Google Scholar] [CrossRef]
- Montero-Prado, P.; Ruiz Morales, G.A. Recent Advances in Research and Development to Increase Shelf Life and Safety of Packaged Foods: New Technologies in Food Packaging. Agron. Mesoam. 2022, 33, 48389. [Google Scholar] [CrossRef]
- Redding, M.; Bolten, S.; Gu, G.; Luo, Y.; Micallef, S.A.; Millner, P.; Nou, X. Growth and Inactivation of Listeria monocytogenes in Sterile Extracts of Fruits and Vegetables: Impact of the Intrinsic Factors pH, Sugar and Organic Acid Content. Int. J. Food Microbiol. 2023, 386, 110043. [Google Scholar] [CrossRef]
- Taştan, Ö. Effect of Dietary Fiber Enrichment on Quality Characteristics and Consumer Acceptance of Fruit Snacks. Akad. Gıda 2023, 21, 343–352. [Google Scholar] [CrossRef]
- Pandanwangi, A.A.; Rosida, R.; Sudiana, I.M.; Napitupulu, T.P.; Kanti, A. Effect of Sucrose Concentration on Microbiological, Physicochemical, Antioxidant Activity, and Organoleptic Characteristics of Salak Fruit Juice Beverage Fermented with Lactobacillus plantarum InaCC B153. AJARCDE 2024, 2024, 169–174. [Google Scholar] [CrossRef]
- Krahulcová, M.; Micajová, B.; Olejníková, P.; Cverenkárová, K.; Bírošová, L. Microbial Safety of Smoothie Drinks from Fresh Bars Collected in Slovakia. Foods 2021, 10, 551. [Google Scholar] [CrossRef]
- Sequino, G.; Valentino, V.; Torrieri, E.; De Filippis, F. Specific Microbial Communities are Selected in Minimally-Processed Fruit and Vegetables According to the Type of Product. Foods 2022, 11, 2164. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of Phytochemical Composition and Antioxidant Capacity of 22 Old Apple Cultivars Grown in Poland. Eur. Food Res. Technol. 2018, 244, 647–662. [Google Scholar] [CrossRef]
- Salazar-Orbea, G.L.; Garcia-Villalba, R.; Bernal, M.J.; Hernandez-Jimenez, A.; Egea, J.A.; Tomas-Barberan, F.A.; Sanchez-Siles, L.M. Effect of Storage Conditions on the Stability of Polyphenols of Apple and Strawberry Purees Produced at Industrial Scale by Different Processing Techniques. J. Agric. Food Chem. 2023, 71, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Lahlou, R.A.; Silva, L.R. Phenolic Compounds from Cherries and Berries for Chronic Disease Management and Cardiovascular Risk Reduction. Nutrients 2024, 16, 1597. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Miller, M.G.; Thamgthaeng, N.; Sott, T.M.; Shukitt, B.H.; Edirisinghe, I.; Burton-Freeman, B. Metabolic Fate of Strawberry Polyphenols After Chronic Intake in Healthy Older Adults. Food Funct. J. 2018, 9, 96–106. [Google Scholar] [CrossRef]
- Čížková, H.; ŠevČík, R.; Rajchl, A.; Voldřich, M. Nutritional Quality of Commercial Fruit Baby Food. Czech J. Food Sci. 2009, 27, 134–137. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Barba, F.J.; Esteve, M.J.; Frígola, A. Quality Parameters, Bioactive Compounds and Their Correlation with Antioxidant Capacity of Commercial Fruit-Based Baby Foods. Food Sci. Technol. Int. 2013, 20, 479–487. [Google Scholar] [CrossRef]
- Sanchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velazquez, D.A. The Folin-Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 3, 5990–5999. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Akpomie, T.; Augustine, A.; Anwani, S.; Aandaka, B.I. Comparative Analysis of Ascorbic Acid Content of Three Varieties of Apple Fruit Sold in Lafia Open Markets, North Central Nigeria. Int. J. Adv. Chem. 2021, 9, 8–11. [Google Scholar] [CrossRef]
- Ravimannan, N.; Nisansala, A. Study on Antioxidant Activity in Fruits and Vegetables—A Review. Int. J. Adv. Res. Biol. Sci. 2017, 4, 93–101. [Google Scholar] [CrossRef]
- Filipiak-Florkiewicz, A.; Dereń, K. The Content of Phenolic Compounds and Antioxidant Activity Ready to Eat Desserts for Infants. Rocz. Panstw. Zakl. Hig. 2011, 62, 383–388. [Google Scholar] [PubMed]
- Gu, C.; Howell, K.; Dushea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of the Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Żmudzińska, A.; Puścion-Jakubik, A.; Bielecka, J.; Grabia, M.; Soroczyńska, J.; Mielcarek, K.; Socha, K. Health Safety Assessment of Ready-to-Eat Products Consumed by Children Aged 0.5–3 Years on the Polish Market. Nutrients 2022, 14, 2325. [Google Scholar] [CrossRef]
- Feszterová, M.; Kowalska, M.; Mišiaková, M. Stability of Vitamin C Content in Plant and Vegetable Juices under Different Storing Conditions. Appl. Sci. 2023, 13, 10640. [Google Scholar] [CrossRef]
- Cloney, K.; Ramsey, S.; Burns, E. Vitamin C deficiency in a 12-year-old male presenting with knee pain: A case report. Clin. Corresp. 2022, 24, 544–546. [Google Scholar] [CrossRef]
- Carr, A.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Khan, A.; Shamrez, B.; Lital, U.; Zeb, A.; Rehman, Z.; Naz, R.; Khan, S.H.; Shah, A.S. Effect of Sucrose Solution and Chemical Preservatives on Overall Quality of Strawberry Fruit. Food Process. Technol. 2014, 6, 2. [Google Scholar] [CrossRef]
- Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J. Food Compos. Anal. 2008, 21, 241–248. [Google Scholar] [CrossRef]
- Makule, E.; Dimoso, N.; Tassou, S.A. Precooling and Cold Storage Methods for Fruits and Vegetables in Sub-Saharan Africa—A Review. Horticulturae 2022, 8, 776. [Google Scholar] [CrossRef]
- Paulsen, E.; Moreno, D.A.; Martinez-Romero, D.; Garcia-Viguera, C. Bioactive Compounds of Broccoli Florets as Affected by Packing Micro-perforations and Storage Temperature. Coatings 2023, 13, 568. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef]
- Kim, Y.H.; Won, Y.-S.; Yang, X.; Kumazoe, M.; Yamashita, S.; Hara, A.; Takagaki, A.; Goto, K.; Nanjo, F.; Tachibana, H. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4+ T Cell and Natural Killer Cell Activities. J. Agric. Food Chem. 2016, 64, 3591–3597. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Darzi, M.; Abbasi, K.; Ghiasvand, R.; Tabib, M.A.; Rouhani, M.H. The Association Between Dietary Polyphenol Intake and Attention-deficit Hyperactivity Disorder: A Case-Control Study. BMC Pediatr. 2022, 22, 700. [Google Scholar] [CrossRef]
- Bouzari, A.; Holstege, D.; Barrett, D.M. Mineral, Fiber, and Total Phenolic Retention in Eight Fruits and Vegetables: A Comparison of Refrigerated and Frozen Storage. J. Agric. Food Chem. 2015, 63, 951–956. [Google Scholar] [CrossRef]
- Yadav, S.; Arora, S.K.; Vats, S. Vitamins and Minerals: A Review on Processing Losses and Strategies to Control It. Mod. Conc. Dev. Agron. 2023, 12, 1178–1182. [Google Scholar] [CrossRef]
- Alshallash, K.S.; Shahat, M.; Ibrahim, M.I.; Hegazy, A.I.; Hamdy, A.E.; Elnaggar, I.A.; El-Wahend, N.A.; Taha, I.M. The Effect of Different Processing Methods on the Behavior of Minerals Content in Food Products. J. Ecol. Eng. 2023, 24, 263–275. [Google Scholar] [CrossRef]
- Yue, T.; Zhang, Q.; Li, G.; Qin, H. Global Burden of Nutritional Deficiencies among Children under 5 Years of Age from 2010 to 2019. Nutrients 2022, 14, 2685. [Google Scholar] [CrossRef]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron Deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
No. | Symbol of the Sample | Percentage of Individual Components |
---|---|---|
1 | A1 | Apple (100%) |
2 | A2 | |
3 | A3 | |
4 | A4 | |
5 | P1 | Pear (100%) |
6 | P2 | |
7 | P3 | |
8 | P4 | |
9 | M1 | Apple (57%), banana (22%), strawberry (20%) |
10 | M2 | Puree: apple (34%), banana (30%), strawberry (27%); juices: carrot (5%), apple (4%) |
11 | M3 | Puree: banana (30%), apple (28%), strawberry (27%); juices: apple (10%), carrot (5%) |
12 | M4 | Puree: banana (30%), apple (28%), strawberry (27%); juices: apple (10%), carrot (5%) |
Microorganism Group | Type of Microbiological Medium | Inoculation Method | Incubation Conditions |
---|---|---|---|
Total aerobic mesophilic bacteria (TAMB) | Nutrient agar (Merck, Darmstadt, Germany) | 1.0 mL of each dilution in a Petri dish and adding 20 mL of liquid (50 °C) of microbiological medium | 30 °C/72 h |
Total mold and yeast count | YGC substrate with chloramphenicol (Merck, Darmstadt, Germany) | 25 °C/120 h | |
Total number of coliforms bacteria | CHROMOGENIC COLIFORM LAB-AGAR™ (BioMaxima, Lublin, Poland) | 0.1 mL of each dilution was spread onto the surface of the sterile dry media | 30 °C/72 h |
The number of spores of Bacillus sp. | After pasteurization (80 °C/15 min) on nutrient agar (Merck, Darmstadt, Germany) | 30 °C/48 h | |
Total Enterobacteriaceae | VRBL agar (Merck, Darmstadt, Germany) | 37 °C/24 h | |
Total Enterococcus sp. | Slanetz–Bartley agar (Merck, Darmstadt, Germany) | 37 °C/48 h | |
Total Staphylococcus sp. | Baird–Parker agar (Merck, Darmstadt, Germany) | ||
Total Listeria monocytogenes | ALOA agar (Merck, Darmstadt, Germany) |
Sample/Storage Conditions | Total Aerobic Mesophilic Bacteria (TAMB) (log CFU/g) | Mold and Yeast Count (log CFU/g) | ||||
---|---|---|---|---|---|---|
Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | |
A1 | <10 | 2.36 | <10 | <10 | <10 | <10 |
A2 | 1.60 | <10 | 5.15 | |||
A3 | 1.90 | 5.80 | 1.60 | 5.18 | ||
A4 | <10 | <10 | <10 | <10 | ||
P1 | 1.60 | 5.51 | ||||
P2 | <10 | 5.38 | 1.79 | 4.15 | ||
P3 | 1.90 | 5.59 | 5.97 | 1.96 | 4.23 | 5.93 |
P4 | <10 | |||||
M1 | 1.60 | 2.18 | 3.63 | 1.65 | <10 | 2.70 |
M2 | <10 | |||||
M3 | ||||||
M4 |
Sample/Storage Conditions | Na [mg/100 g] | K [mg/100 g] | Mg [mg/100 g] | Ca [mg/100 g] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | |
A1 | 8.33 ± 0.35 aA | 8.11 ± 0.46 aB | 8.02 ± 0.02 aC | 34.62 ± 4.35 dA | 34.08 ± 3.29 dB | 33.49 ± 4.35 dA | 3.9 ± 0.10 bA | 3.62 ± 0.01 bA | 2.60 ± 0.00 bB | 6.49 ± 0.11 aA | 6.23 ± 0.01 aA | 6.24 ± 0.02 aA |
A2 | 3.15 ± 0.52 bA | 3.11 ± 0.02 bB | 3.10 ± 0.28 bB | 57.10 ± 5.17 bA | 56.91 ± 3.64 bB | 52.54 ± 1.37 bC | 8.05 ± 0.00 aA | 7.58 ± 0.34 aB | 7.24 ± 0.04 aB | 4.18 ± 0.72 cA | 4.02 ± 0.06 cA | 4.01 ± 0.19 cA |
A3 | 3.45 ± 0.44 bA | 3.33 ± 0.11 bB | 3.31 ± 0.09 bB | 40.34 ± 0.90 cA | 40.02 ± 0.85 cA | 39.91 ± 0.04 cA | 3.15 ± 0.28 cA | 2.94 ± 0.01 bA | 2.67 ± 0.02 bB | 5.22 ± 0.03 bA | 5.14 ± 0.00 bA | 5.12 ± 0.09 bA |
A4 | 3.15 ± 0.59 bA | 3.13 ± 0.39 bA | 3.13 ± 0.00 bA | 70.49 ± 3.35 aA | 70.11 ± 2.63 aA | 69.12 ± 0.92 aA | 3.37 ± 0.13 cA | 3.28 ± 0.11 bA | 3.01 ± 0.12 bA | 5.40 ± 0.23 bA | 5.29 ± 0.02 bA | 5.16 ± 0.72 bA |
P1 | 6.35 ± 0.22 bA | 6.28 ± 0.01 bA | 6.18 ± 0.92 bB | 34.62 ± 4.35 cA | 34.03 ± 0.84 cA | 33.88 ± 0.28 cA | 3.9 ± 0.10 bA | 3.72 ± 0.38 bA | 3.56 ± 0.22 bA | 8.52 ± 1.04 bA | 8.28 ± 0.29 bA | 8.12 ± 0.34 bA |
P2 | 8.10 ± 0.31 aA | 8.02 ± 0.06 aB | 7.92 ± 0.03 aB | 47.45 ± 1.20 bA | 47.21 ± 2.58 bA | 47.01 ± 1.47 bA | 5.36 ± 0.02 aA | 5.35 ± 0.00 aA | 5.05 ± 0.22 aB | 9.95 ± 1.59 aA | 9.31 ± 0.86 aA | 9.17 ± 2.48 aA |
P3 | 8.13 ± 0.15 aA | 8.07 ± 0.05 aB | 8.02 ± 0.03 aB | 43.50 ± 1.96 bA | 43.12 ± 0.38 bA | 43.11 ± 1.33 bA | 3.35 ± 0.12 bA | 3.17 ± 0.02 bA | 3.07 ± 0.18 bB | 9.15 ± 0.02 aA | 8.82 ± 0.00 cB | 8.68 ± 0.86 bB |
P4 | 4.23 ± 0.30 cA | 4.15 ± 0.17 cB | 4.11 ± 0.05 cB | 62.55 ± 3.23 aA | 61.93 ± 0.45 aA | 61.25 ± 2.17 aA | 5.43 ± 0.05 aA | 5.32 ± 0.00 aA | 5.12 ± 0.65 aB | 7.94 ± 0.42 cA | 7.64 ± 0.08 cA | 7.21 ± 0.12 cA |
M1 | 10.80 ± 0.32 cA | 10.68 ± 0.14 cA | 10.62 ± 0.03 cA | 33.30 ± 4.04 bA | 32.47 ± 0.21 cB | 31.63 ± 1.38 cB | 5.81 ± 0.43 bA | 5.55 ± 0.93 bA | 5.41 ± 0.19 cA | 6.24 ± 0.00 bA | 6.05 ± 0.09 bA | 5.58 ± 0.02 cB |
M2 | 12.02 ± 0.49 bA | 11.92 ± 0.37 bB | 11.88 ± 0.01 bB | 57.33 ± 4.84 aA | 56.84 ± 0.27 bA | 52.81 ± 1.99 bB | 8.92 ± 1.92 aA | 8.66 ± 0.65 aB | 8.52 ± 0.02 bB | 6.73 ± 1.35 bA | 6.51 ± 0.84 bA | 6.43 ± 0.92 bA |
M3 | 15.61 ± 0.11 aA | 15.42 ± 0.01 aA | 15.38 ± 0.38 aA | 54.00 ± 5.93 aA | 53.88 ± 1.53 bA | 52.99 ± 3.13 bB | 9.77 ± 0.28 aA | 9.15 ± 0.04 aB | 8.28 ± 0.28 bC | 7.32 ± 0.37 aA | 7.12 ± 0.00 aA | 7.03 ± 0.85 aA |
M4 | 14.79 ± 0.84 aA | 14.68 ± 0.02 aA | 14.62 ± 0.24 aA | 60.62 ± 3.62 aA | 60.01 ± 0.92 aA | 59.73 ± 3.51 aA | 9.82 ± 0.18 aA | 9.34 ± 0.39 aB | 9.03 ± 0.10 aB | 6.67 ± 0.10 bA | 6.48 ± 0.06 bA | 6.22 ± 0.02 bA |
Sample/Storage Conditions | Mn [mg/100 g] | Cu [mg/100 g] | Fe [mg/100 g] | Zn [mg/100 g] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | |
A1 | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.09 ± 0.00 aA | 0.09 ± 0.00 aA | 0.09 ± 0.00 aA | 0.06 ± 0.01 cA | 0.06 ± 0.01 cA | 0.06 ± 0.01 cA | 0.02 ± 0.00 bA | 0.02 ± 0.00 cA | 0.02 ± 0.00 cA |
A2 | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.03 ± 0.00 bA | 0.03 ± 0.00 bA | 0.03 ± 0.00 bA | 0.15 ± 0.07 aA | 0.13 ± 0.00 aA | 0.12 ± 0.07 aA | 0.03 ± 0.00 bA | 0.03 ± 0.00 cA | 0.03 ± 0.00 cA |
A3 | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.03 ± 0.00 bA | 0.03 ± 0.00 bA | 0.03 ± 0.00 bA | 0.10 ± 0.02 bA | 0.09 ± 0.00 bA | 0.07 ± 0.02 bA | 0.22 ± 0.02 aA | 0.20 ± 0.01 aA | 0.18 ± 0.02 aA |
A4 | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.02 ± 0.00 bA | 0.02 ± 0.00 bA | 0.02 ± 0.00 bA | 0.05 ± 0.01 cA | 0.05 ± 0.01 cA | 0.05 ± 0.01 cA | 0.17 ± 0.04 aA | 0.16 ± 0.00 bA | 0.12 ± 0.04 bB |
P1 | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.10 ± 0.03 aA | 0.10 ± 0.03 aA | 0.10 ± 0.03 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.08 ± 0.00 aA | 0.06 ± 0.00 aA | 0.08 ± 0.00 aA |
P2 | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.03 ± 0.00 aA | 0.06 ± 0.00 bA | 0.05 ± 0.00 bA | 0.06 ± 0.00 bA | 0.08 ± 0.01 aA | 0.07 ± 0.01 aA | 0.08 ± 0.01 aA | 0.08 ± 0.00 aA | 0.07 ± 0.00 aA | 0.08 ± 0.00 aA |
P3 | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.06 ± 0.01 bA | 0.06 ± 0.01 bA | 0.06 ± 0.01 bA | 0.12 ± 0.01 aA | 0.11 ± 0.01 aA | 0.12 ± 0.01 aA | 0.06 ± 0.00 aA | 0.05 ± 0.00 aA | 0.06 ± 0.00 aA |
P4 | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.02 ± 0.00 aA | 0.04 ± 0.00 bA | 0.04 ± 0.00 bA | 0.04 ± 0.00 bA | 0.09 ± 0.01 aA | 0.07 ± 0.01 aA | 0.09 ± 0.01 aA | 0.06 ± 0.01 aA | 0.05 ± 0.01 aA | 0.06 ± 0.01 aA |
M1 | 0.08 ± 0.00 aA | 0.07 ± 0.00 aA | 0.08 ± 0.00 aA | 0.05 ± 0.00 bA | 0.05 ± 0.00 bA | 0.05 ± 0.00 aA | 0.13 ± 0.01 aA | 0.10 ± 0.01 aA | 0.10 ± 0.01 aA | 0.05 ± 0.00 aA | 0.05 ± 0.00 aA | 0.05 ± 0.00 aA |
M2 | 0.07 ± 0.01 aA | 0.06 ± 0.01 aA | 0.07 ± 0.01 aA | 0.04 ± 0.01 bA | 0.04 ± 0.01 bA | 0.04 ± 0.01 aA | 0.14 ± 0.01 aA | 0.13 ± 0.01 aA | 0.13 ± 0.01 aA | 0.05 ± 0.00 aA | 0.05 ± 0.00 aA | 0.05 ± 0.00 aA |
M3 | 0.08 ± 0.00 aA | 0.07 ± 0.00 aA | 0.08 ± 0.00 aA | 0.08 ± 0.02 aA | 0.07 ± 0.02 aA | 0.07 ± 0.02 aA | 0.12 ± 0.04 aA | 0.12 ± 0.00 aA | 0.11 ± 0.04 aA | 0.05 ± 0.00 aA | 0.05 ± 0.00 aA | 0.05 ± 0.00 aA |
M4 | 0.07 ± 0.00 aA | 0.06 ± 0.00 aA | 0.07 ± 0.00 aA | 0.06 ± 0.01 bA | 0.06 ± 0.01 bA | 0.06 ± 0.01 aA | 0.13 ± 0.01 aA | 0.13 ± 0.00 aA | 0.13 ± 0.01 aA | 0.05 ± 0.01 aA | 0.05 ± 0.01 aA | 0.05 ± 0.01 aA |
Sample/Storage Conditions | TPC [mg CE/100 g] | TFC [mg CE/100 g] | Vitamin C content [mg/100 g] | ||||||
---|---|---|---|---|---|---|---|---|---|
Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | Fresh | 4 °C/48 h | 23 °C/48 h | |
A1 | 56.39 ± 0.15 aA | 55.27 ± 1.49 aB | 54.24 ± 0.29 aC | 5.66 ± 0.91 aA | 5.23 ± 0.06 aA | 4.92 ± 0.01 aB | 6.37 ± 0.81 dA | 6.22 ± 0.04 dA | 5.45 ± 0.09 dB |
A2 | 14.94 ± 0.78 cA | 14.42 ± 0.92 cA | 13.27 ± 0.12 cB | 5.09 ± 0.12 bA | 4.56 ± 0.11 cB | 3.84 ± 0.07 dC | 9.80 ± 0.16 bA | 9.23 ± 0.18 bA | 8.1 ± 0.01 bB |
A3 | 38.49 ± 0.02 bA | 37.22 ± 2.73 bB | 36.19 ± 1.28 bC | 5.58 ± 0.72 aA | 4.98 ± 0.09 bB | 4.38 ± 0.12 aC | 7.35 ± 0.04 cA | 7.02 ± 0.15 cA | 6.23 ± 0.18 cB |
A4 | 19.75 ± 0.19 cA | 17.92 ± 2.01 cB | 17.62 + 0.92 cC | 5.49 ± 0.10 aA | 5.02 ± 0.14 bA | 4.23 ± 0.16 cB | 11.27 ± 1.12 aA | 10.54 ± 0.03 aB | 9.97 ± 0.99 aC |
P1 | 13.97 ± 0.05 bA | 13.56 ± 0.62 bA | 12.83 ± 1.29 bB | 4.89 ± 0.06 cA | 4.75 ± 0.03 dA | 4.21 ± 0.11 cB | 5.88 ± 1.24 cA | 5.55 ± 0.02 cA | 5.01 ± 0.71 cB |
P2 | 11.81 ± 0.19 bA | 11.28 ± 0.16 bA | 10.95 ± 0.62 bB | 5.7 ± 0.01 aA | 5.53 ± 0.01 aA | 5.02 ± 0.17 aB | 7.35 ± 0.74 bA | 7.07 ± 0.27 bA | 6.53 ± 0.66 bB |
P3 | 13.97 ± 0.23 bA | 13.84 ± 0.18 bA | 12.72 ± 0.27 bB | 5.33 ± 0.17 aA | 5.05 ± 0.18 bB | 4.71 ± 0.03 bC | 7.84 ± 0.51 bA | 7.62 ± 0.51 bA | 6.82 ± 0.23 bB |
P4 | 45.04 ± 0.01 aA | 44.23 ± 2.17 aB | 43.91 ± 0.86 aB | 5.73 ± 0.61 bA | 4.98 ± 0.02 cB | 4.26 ± 0.01 cC | 13.72 ± 0.03 aA | 12.27 ± 0.26 aB | 11.29 ± 0.39 aC |
M1 | 57.93 ± 0.04 cA | 55.21 ± 4.81 bA | 53.04 ± 2.39 cB | 5.95 ± 0.22 cA | 5.72 ± 0.04 bA | 5.08 ± 0.02 cB | 11.76 ± 0.28 cA | 10.99 ± 0.18 bB | 9.26 ± 0.12 cC |
M2 | 89.34 ± 0.81 aA | 86.96 ± 3.94 bA | 89.12 ± 4.24 aA | 6.4 ± 0.02 aA | 6.03 ± 0.06 aB | 5.85 ± 0.11 aC | 14.74 ± 0.04 bA | 14.28 ± 0.12 bA | 12.27 ± 0.34 bB |
M3 | 60.57 ± 0.12 cA | 57.12 ± 4.04 bA | 53.93 ± 3.19 cB | 5.75 ± 0.07 cA | 5.23 ± 0.11 cB | 5.12 ± 0.23 cC | 15.19 ± 0.67 bA | 14.92 ± 0.11 bA | 13.71 ± 0.58 bB |
M4 | 68.51 ± 0.45 bA | 66.19 ± 2.77 aA | 62.24 ± 4.72 bB | 6.04 ± 0.17 bA | 5.71 ± 0.18 bB | 5.38 ± 0.44 bC | 16.66 ± 0.12 aA | 16.06 ± 0.26 aA | 15.83 ± 0.02 aB |
TPC | TFC | Vitamin C Content | |
---|---|---|---|
Test day | |||
Fresh | 0.96 * | 0.86 * | 0.76 * |
Storage for 48 h at room temperature | 0.95 * | 0.81 * | 0.71 * |
Storage for 48 h at refrigerated temperature (4 °C) | 0.97 * | 0.75 * | 0.73 * |
Mousse type | |||
Apple mousses | 0.92 * | 0.57 | −0.06 |
Pear mousses | 0.86 * | 0.19 | 0.46 |
Multi-component mousses | 0.85 * | 0.77 * | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkiewicz, A.; Wiśniewski, P.; Tańska, M.; Goksen, G.; Pietrzak-Fiećko, R. Effect of the Storage Conditions on the Microbiological Quality and Selected Bioactive Compound Content in Fruit Mousses for Infants and Young Children. Appl. Sci. 2024, 14, 11347. https://doi.org/10.3390/app142311347
Purkiewicz A, Wiśniewski P, Tańska M, Goksen G, Pietrzak-Fiećko R. Effect of the Storage Conditions on the Microbiological Quality and Selected Bioactive Compound Content in Fruit Mousses for Infants and Young Children. Applied Sciences. 2024; 14(23):11347. https://doi.org/10.3390/app142311347
Chicago/Turabian StylePurkiewicz, Aleksandra, Patryk Wiśniewski, Małgorzata Tańska, Gulden Goksen, and Renata Pietrzak-Fiećko. 2024. "Effect of the Storage Conditions on the Microbiological Quality and Selected Bioactive Compound Content in Fruit Mousses for Infants and Young Children" Applied Sciences 14, no. 23: 11347. https://doi.org/10.3390/app142311347
APA StylePurkiewicz, A., Wiśniewski, P., Tańska, M., Goksen, G., & Pietrzak-Fiećko, R. (2024). Effect of the Storage Conditions on the Microbiological Quality and Selected Bioactive Compound Content in Fruit Mousses for Infants and Young Children. Applied Sciences, 14(23), 11347. https://doi.org/10.3390/app142311347