Interpretation of a 3D Magnetotellurics Model of the Aceh and Seulimeum Segments of the Sumatran Fault Zone
Abstract
:1. Introduction
2. Geological Setting
3. MT Method
3.1. MT Method Theory
3.2. MT Data Acquisition and Processing
3.3. Dimensionality Analysis
3.4. Three-Dimensional MT Inversion
4. Results
4.1. Dimensionality Analysis: Polar Diagram
4.2. Dimensionality Analysis: Induction Arrows
4.3. Groom–Bailey Decomposition and the Depth of Penetration (DOP)
4.4. Three-Dimensional Inversion Model of MT Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeMets, C.; Gordon, R.G.; Argus, D.F. Geologically Current Plate Motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef]
- Fitch, T.J. Plate Convergence, Transcurrent Faults, and Internal Deformation Adjacent to Southeast Asia and the Western Pacific. J. Geophys. Res. 1972, 77, 4432–4460. [Google Scholar] [CrossRef]
- Hamilton, W. Tectonics of the Indonesian Region; U.S. Government Publishing Office: Washington, DC, USA, 1979.
- Genrich, J.F.; Bock, Y.; McCaffrey, R.; Prawirodirdjo, L.; Stevens, C.W.; Puntodewo, S.S.O.; Subarya, C.; Wdowinski, S. Distribution of Slip at the Northern Sumatran Fault System. J. Geophys. Res. Solid Earth 2000, 105, 28327–28341. [Google Scholar] [CrossRef]
- Curray, J.R. Tectonics and History of the Andaman Sea Region. J. Asian Earth Sci. 2005, 25, 187–232. [Google Scholar] [CrossRef]
- Fernández-Blanco, D.; Philippon, M.; von Hagke, C. Structure and Kinematics of the Sumatran Fault System in North Sumatra (Indonesia). Tectonophysics 2016, 693, 453–464. [Google Scholar] [CrossRef]
- Sieh, K.; Natawidjaja, D. Neotectonics of the Sumatran Fault, Indonesia. J. Geophys. Res. Solid Earth 2000, 105, 28295–28326. [Google Scholar] [CrossRef]
- Febriansyah Putra, A.; Chenrai, P. Geomorphic Interpretation on the Formation of Strike-Slip Basins along the Northern Sumatran Fault. J. Asian Earth Sci. X 2023, 10, 100167. [Google Scholar] [CrossRef]
- Ito, T.; Gunawan, E.; Kimata, F.; Tabei, T.; Simons, M.; Meilano, I.; Agustan; Ohta, Y.; Nurdin, I.; Sugiyanto, D. Isolating Along-strike Variations in the Depth Extent of Shallow Creep and Fault Locking on the Northern Great Sumatran Fault. J. Geophys. Res. Solid Earth 2012, 117, B06409. [Google Scholar] [CrossRef]
- Natawidjaja, D.; Sieh, K. Slip Rate along the Sumatran Transcurrent Fault and Its Tectonic Significance. In Proceedings of the Conference on Tectonic Evolution of Southeast Asia, London, UK, 21–24 August 1994; Volume 7–8. [Google Scholar]
- Sieh, K.; Zachariasen, J.; Bock, Y.; Edwards, L.; Taylor, F.; Gans, P. Active Tectonics of Sumatra. Geol. Soc. Am. Abstr. Programs 1994, 26, 382. [Google Scholar]
- Bellier, O.; Sébrier, M. Is the Slip Rate Variation on the Great Sumatran Fault Accommodated by Fore-arc Stretching? Geophys. Res. Lett. 1995, 22, 1969–1972. [Google Scholar] [CrossRef]
- Bennet, J.D.; Brige, D.M.C.; Cameron, N.R.; Djunuddin, A.; Ghazali, S.A.; Jeffery, D.H.; Kartawa, W.; Keats, W.; Rock, N.M.S.; Thosmson, S.J.; et al. Geological Map of Banda Aceh Sheet, Scale 1: 250.000; Indonesian Geological Research and Development Center: Bandung, Indonesia, 1981. [Google Scholar]
- Hurukawa, N.; Wulandari, B.R.; Kasahara, M. Earthquake History of the Sumatran Fault, Indonesia, since 1892, Derived from Relocation of Large Earthquakes. Bull. Seismol. Soc. Am. 2014, 104, 1750–1762. [Google Scholar] [CrossRef]
- Cagniard, L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 1953, 18, 605–635. [Google Scholar] [CrossRef]
- Tikhonov, A.N. On Determining Electrical Characteristics of the Deep Layers of the Earth’s Crust. Doklady 1950, 73, 295–297. [Google Scholar]
- Simpson, F.; Bahr, K. Practical Magnetotellurics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Berdichevsky, M.; Dmitriev, V. Models and Methods of Magnetotellurics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Zhang, L.; Unsworth, M.; Jin, S.; Wei, W.; Ye, G.; Jones, A.G.; Jing, J.; Dong, H.; Xie, C.; Le Pape, F.; et al. Structure of the Central Altyn Tagh Fault Revealed by Magnetotelluric Data: New Insights into the Structure of the Northern Margin of the India–Asia Collision. Earth Planet. Sci. Lett. 2015, 415, 67–79. [Google Scholar] [CrossRef]
- Oryński, S.; Jóźwiak, W.; Nowożyński, K. An Integrative 3-D Model of the Deep Lithospheric Structure beneath Dolsk and Odra Fault Zones as a Result of Magnetotelluric Data Interpretation. Geophys. J. Int. 2021, 227, 1917–1936. [Google Scholar] [CrossRef]
- He, M.; Xu, Y.; Fang, H.; Zhang, X. Deep Structure and Formation Model of the Southernmost Tanlu Fault Zone, Eastern China: Constrained from Magnetotelluric Imaging. J. Asian Earth Sci. 2023, 256, 105805. [Google Scholar] [CrossRef]
- Nurhasan; Ogawa, Y.; Kimata, F.; Sutarno, D.; Sugiyanto, D.; Ismail, N. Identification of Sumatran Fault Zone Using Magnetotelluric and Garvity Data. In Proceedings of the 13th SEGJ International Symposium, Tokyo, Japan, 12–14 November 2018; Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan: Tokyo, Japan, 2019; pp. 182–185. [Google Scholar]
- Ogawa, Y.; Uchida, T. A Two-Dimensional Magnetotelluric Inversion Assuming Gaussian Static Shift. Geophys. J. Int. 1996, 126, 69–76. [Google Scholar] [CrossRef]
- Sutarno, D.; Ogawa, Y.; Prihantoro, R.; Sugiyanto, D.; Ismail, N.; Kimata, F. Electrical Resistivity Imaging of Sumatran Fault Based on Magnetotelluric Data. In Proceedings of the 22nd EM Induction Workshop, Weimar, Germany, 24–30 August 2014. [Google Scholar]
- Yanis, M.; Abdullah, F.; Zaini, N.; Ismail, N. The Northernmost Part of the Great Sumatran Fault Map and Images Derived from Gravity Anomaly. Acta Geophys. 2021, 69, 795–807. [Google Scholar] [CrossRef]
- Syukri, M.; Saad, R. Seulimeum Segment Characteristic Indicated by 2-D Resistivity Imaging Method. NRIAG J. Astron. Geophys. 2017, 6, 210–217. [Google Scholar] [CrossRef]
- Natawidjaja, D.H. Neotectonics of the Sumatran Fault and Paleogeodesy of the Sumatran Subduction Zone; California Institute of Technology: Pasadena, CA, USA, 2003. [Google Scholar]
- Barber, A.; Crow, M.; Milsom, J. Introduction and Previous Research. In Sumatra: Geology, Resources and Tectonic Evolution; Geological Society of London: London, UK, 2005. [Google Scholar]
- Singh, S.C.; Moeremans, R.; McArdle, J.; Johansen, K. Seismic Images of the Sliver Strike-slip Fault and Back Thrust in the Andaman-Nicobar Region. J. Geophys. Res. Solid. Earth 2013, 118, 5208–5224. [Google Scholar] [CrossRef]
- Fontaine, H.; Gafoer, S. The Pre-Tertiary Fossils of Sumatra and Their Environments; CCOP Technical Secretariat: Bangkok, Thailand, 1989. [Google Scholar]
- Cameron, N.R.; Bennett, J.D.; Bridge, D.M.; Clarke, M.C.G.; Djunuddin, A.; Ghazali, S.A.; Harahap, H.; Jeffery, D.H.; Kartawa, W.; Keats, W.; et al. Geological Map of Takengon Sheet, Sumatra, Scale 1: 250.000; Indonesian Geological Research and Development Center: Bandung, Indonesia, 1983. [Google Scholar]
- Hady, A.K.; Marliyani, G.I. Updated Segmentation Model of the Aceh Segment of the Great Sumatran Fault System in Northern Sumatra, Indonesia. J. Appl. Geol. 2020, 5, 84–100. [Google Scholar] [CrossRef]
- Natawidjaja, D.H.; Triyoso, W. The Sumatran Fault Zone—From Source to Hazard. J. Earthq. Tsunami 2007, 1, 21–47. [Google Scholar] [CrossRef]
- Curray, J.R.; Moore, D.G.; Lawver, L.A.; Emmel, F.J.; Raitt, R.W.; Henry, M.; Kieckhefer, R. Tectonics of Andaman Sea and Burma, in Geological and Geophysical Investigations of Continental Margins. Amer. Assoc. Petrol. Geol. Mem. 1979, 29, 189–198. [Google Scholar]
- Moechtar, H.; Subiyanto, S.; Sugianto, D. Geologi Aluvium Dan Karakter Endapan Pantai/Pematang Pantai di Lembah Krueng Aceh, Aceh Besar (Prov. NAD). J. Geol. Dan. Sumberd. Miner. 2009, 19, 273–283. [Google Scholar] [CrossRef]
- Kumar, S. Tipper Magnitude: A Possible Indicator of Anomalous Conducting Zone. J. Geophys. 2017, XXXV, 83–87. [Google Scholar]
- Muksin, U.; Irwandi; Rusydy, I.; Muzli; Erbas, K.; Marwan; Asrillah; Muzakir; Ismail, N. Investigation of Aceh Segment and Seulimeum Fault by Using Seismological Data; A Preliminary Result. J. Phys. Conf. Ser. 2018, 1011, 012031. [Google Scholar] [CrossRef]
- Wait, J.R. Theory of Magnetotelluric Fields. J. Res. NBS D 1962, 66, 509–541. [Google Scholar] [CrossRef]
- Berdichevsky, M.N.; Dmitriev, V.I. Magnetotellurics in the Context of the Theory of Ill-Posed Problems; Society of Exploration Geophysicists: Tulsa, OK, USA, 2002. [Google Scholar]
- Sutarno, D.; Vozoff, K. Robust M-Estimation of Magnetotelluric Impedance Tensors. Explor. Geophys. 1989, 20, 383–398. [Google Scholar] [CrossRef]
- Egbert, G.D.; Booker, J.R. Robust Estimation of Geomagnetic Transfer Functions. Geophys. J. Int. 1986, 87, 173–194. [Google Scholar] [CrossRef]
- Zorin, N.; Aleksanova, E.; Shimizu, H.; Yakovlev, D. Validity of the Dispersion Relations in Magnetotellurics: Part I—Theory. Earth Planets Space 2020, 72, 9. [Google Scholar] [CrossRef]
- Weidelt, P. The Inverse Problem of Geomagnetic Induction. Z. Geophys. 1972, 38, 257–289. [Google Scholar] [CrossRef]
- Caldwell, T.G.; Bibby, H.M.; Brown, C. The Magnetotelluric Phase Tensor. Geophys. J. Int. 2004, 158, 457–469. [Google Scholar] [CrossRef]
- Berdichevsky, M.N.; Vanyan, L.L.; Koshurnikov, A.V. The Baikal Rift Zone: Magnetotelluric Arbitration of Geodynamic Models. In Proceedings of the XIV Workshop on EM induction in the Earth, Sinaia, Romania, 16–22 August 1998. [Google Scholar]
- Berdichevsky, M.N.; Vanyan, L.L.; Nguen, T.V. Phase Polar Diagrams of the Magnetotelluric Impedance. Izv. Akad. Nauk. SSSR Ser. Fiz. Zemli 1993, 2, 19–23. [Google Scholar]
- Berdichevsky, M.N. Electrical Prospecting by the Method of Magnetotelluric Profiling: Moscow; Nedra Publishing House: Moscow, Russia, 1968. [Google Scholar]
- Chave, A.D.; Jone, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Parkinson, W.D. The Influence of Continents and Oceans on Geomagnetic Variations. Geophys. J. R. Astron. Soc. 1962, 6, 441–449. [Google Scholar] [CrossRef]
- Wiese, H. Geomagnetishce Tiefentellurik. Geofis. Pura Appl. 1962, 52, 83–103. [Google Scholar] [CrossRef]
- Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. ModEM: A Modular System for Inversion of Electromagnetic Geophysical Data. Comput. Geosci. 2014, 66, 40–53. [Google Scholar] [CrossRef]
- Egbert, G.D.; Kelbert, A. Computational recipes for electromagnetic inverse problems. Geophys. J. Int. 2012, 189, 251–267. [Google Scholar] [CrossRef]
- Evans, R.L.; Chave, A.D.; Jones, A.G.; Mackie, R.; Rodi, W. Conductivity of Earth Materials. In The Magnetotelluric Method: Theory and Practice; Chave, A.D., Jones, A.G., Eds.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139020138. [Google Scholar]
- Selway, K. Electrical Discontinuities in the Continental Lithosphere Imaged with Magnetotellurics; AGU Publications: Washington, DC, USA, 2018; pp. 89–109. [Google Scholar]
- Glover, P.W.J. Geophysical Properties of the Near Surface Earth: Electrical Properties. In Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 89–137. [Google Scholar]
- Slezak, K.; Jozwiak, W.; Nowozynski, K.; Orynski, S.; Brasse, H. 3-D Studies of MT Data in the Central Polish Basin: Influence of Inversion Parameters, Model Space and Transfer Function Selection. J. Appl. Geophys. 2019, 161, 26–36. [Google Scholar] [CrossRef]
- Siripunvaraporn, W.; Egbert, G.; Uyeshima, M. WSINV3DMT Version 1.0.0 for Single Processor Machine. pp. 1–21. Available online: https://manualzz.com/doc/6812773/wsinv3dmt-magnetotelluric-inversion-user-manual (accessed on 5 August 2020).
- Hady, A.K.; Marliyani, G.I. Updated Segmentation Model and Cummulative Offset Measurement of the Aceh Segment of the Sumatran Fault System in West Sumatra, Indonesia. J. Appl. Geol. 2021, 5, 84. [Google Scholar] [CrossRef]
- Hoffmann-Rothe, A.; Ritter, O.; Haak, V. Magnetotelluric and Geomagnetic Modelling Reveals Zones of Very High Electrical Conductivity in the Upper Crust of Central Java. Phys. Earth Planet. Inter. 2001, 124, 131–151. [Google Scholar] [CrossRef]
- d’Erceville, I.; Kunetz, G. The effect of a fault on the earth’s natural electromagnetic field. Geophysics 1962, 27, 651–665. [Google Scholar] [CrossRef]
- Halliday, D.; Resnick, R.; Walker, J. Fundamentals of Physics, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Ghorbani, A.; Revil, A.; Coperey, A.; Soueid Ahmed, A.; Roque, S.; Heap, M.J.; Grandis, H.; Viveiros, F. Complex Conductivity of Volcanic Rocks and the Geophysical Mapping of Alteration in Volcanoes. J. Volcanol. Geotherm. Res. 2018, 357, 106–127. [Google Scholar] [CrossRef]
- Rahmadi, R.; Setiawan, B.; Aziz, M. Analisis Karakteristik Endapan Emas Plaser di Daerah Kecamatan Sungai Mas dan Sekitarnya, Kabupaten Aceh Barat, Provinsi Aceh. Acta Geosci. Energy Min. 2023, 2, 32–38. [Google Scholar]
- Park, C.-S.; Jeong, J.-H.; Park, H.-W.; Kim, K. Experimental Study on Electrode Method for Electrical Resistivity Survey to Detect Cavities under Road Pavements. Sustainability 2017, 9, 2320. [Google Scholar] [CrossRef]
Line | Acquisition Time | Recording Time | Spacing (km) | Direction | Site Name |
---|---|---|---|---|---|
A | October and November 2008 | 12 h | 6–10 | SW-NE | ACH01, ACH02, ACH04, ACH05, ACH06, ACH07, ACH08, ACH09, ACH10, ACH11 |
B | August 2009 | 12 h | 9–50 | SW-NE | MBMG, KAWA, SARP, MNYK, GEM, MANE, TANG, KEMA, PIDIB |
C | July–August 2012 | 12 h | 9–13 | N-N | C1, C2, C3, C4, C5, C6 |
D | July–August 2012 | 17 h | 9–50 | SE-NW | D1, D2, D3, D4, D5, D6, D7, D8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roodhiyah, L.Y.; Nurhasan; Tiffany; Pratomo, P.M.; Susilawati, A.; Supriyadi; Ogawa, Y.; Sugiyanto, D.; Sutarno, D.; Srigutomo, W. Interpretation of a 3D Magnetotellurics Model of the Aceh and Seulimeum Segments of the Sumatran Fault Zone. Appl. Sci. 2024, 14, 11335. https://doi.org/10.3390/app142311335
Roodhiyah LY, Nurhasan, Tiffany, Pratomo PM, Susilawati A, Supriyadi, Ogawa Y, Sugiyanto D, Sutarno D, Srigutomo W. Interpretation of a 3D Magnetotellurics Model of the Aceh and Seulimeum Segments of the Sumatran Fault Zone. Applied Sciences. 2024; 14(23):11335. https://doi.org/10.3390/app142311335
Chicago/Turabian StyleRoodhiyah, Lisa Yihaa, Nurhasan, Tiffany, Prihandhanu Mukti Pratomo, Anggie Susilawati, Supriyadi, Yasuo Ogawa, Didik Sugiyanto, Doddy Sutarno, and Wahyu Srigutomo. 2024. "Interpretation of a 3D Magnetotellurics Model of the Aceh and Seulimeum Segments of the Sumatran Fault Zone" Applied Sciences 14, no. 23: 11335. https://doi.org/10.3390/app142311335
APA StyleRoodhiyah, L. Y., Nurhasan, Tiffany, Pratomo, P. M., Susilawati, A., Supriyadi, Ogawa, Y., Sugiyanto, D., Sutarno, D., & Srigutomo, W. (2024). Interpretation of a 3D Magnetotellurics Model of the Aceh and Seulimeum Segments of the Sumatran Fault Zone. Applied Sciences, 14(23), 11335. https://doi.org/10.3390/app142311335