Fixed-Bed Columns of Avocado (Persea americana Hass.) Seed and Peel Biomass as a Retainer for Contaminating Metals
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtention and Treatment of Bio-Adsorbent Material
2.2. Characterization of the Bio-Adsorbent Material
2.3. Preparation and Testing of Fixed-Bed Columns
2.4. Quantification of Metals by Atomic Absorption Spectroscopy
2.5. Determination of Adsorption Isotherms
2.6. Percentage of Desorption Calculations
3. Results and Discussion
3.1. Bio-Adsorbent’s Physicochemical Properties
3.2. Identification of Functional Groups by FTIR-ATR
3.3. Bio-Adsorption Percentage
3.4. Determination of Bio-Adsorption Isotherms
3.5. Desorption Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Cardona Gutiérrez, A.F.; Cabañas Vargas, D.D.; Zepeda Pedreguera, A. Evaluación del poder biosorbente de cáscara de naranja para la eliminación de metales pesados, Pb (II) y Zn (II). Ingeniería 2013, 17, 1–9. [Google Scholar]
- Holt, M.S. Sources of Chemical Contaminants and Routes into the Freshwater Environment. Food Chem. Toxicol. 2000, 38, S21–S27. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. Chapter 4—Heavy Metals. In An Introduction to Nuclear Waste Immobilisation; Ojovan, M.I., Lee, W.E., Eds.; Elsevier: Oxford, UK, 2005; pp. 35–41. ISBN 978-0-08-044462-8. [Google Scholar]
- Romero-Estévez, D.; Yánez-Jácome, G.S.; Navarrete, H. Non-Essential Metal Contamination in Ecuadorian Agricultural Production: A Critical Review. J. Food Compos. Anal. 2023, 115, 104932. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P.K.S.M. Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments—A Review. Front. Environ. Sci. 2019, 7, 66. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Experientia Supplementum; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. ISBN 978-3-7643-8339-8. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Caviedes Rubio, D.I.; Muñoz Calderón, R.A.; Perdomo Gualtero, A.; Rodríguez Acosta, D.; Sandoval Rojas, I.J. Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión. Ing. Región 2015, 13, 73–90. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ.—Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Danovaro, R.; Cocozza di Montanara, A.; Corinaldesi, C.; Dell’Anno, A.; Illuminati, S.; Willis, T.J.; Gambi, C. Bioaccumulation and Biomagnification of Heavy Metals in Marine Micro-Predators. Commun. Biol. 2023, 6, 1206. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.P.M.; Ma, W.C.; Van Straalen, N.M. Biomagnification of Metals in Terrestrial Ecosystems. Sci. Total Environ. 1993, 134, 511–524. [Google Scholar] [CrossRef]
- Madgett, A.S.; Yates, K.; Webster, L.; McKenzie, C.; Moffat, C.F. The Concentration and Biomagnification of Trace Metals and Metalloids across Four Trophic Levels in a Marine Food Web. Mar. Pollut. Bull. 2021, 173, 112929. [Google Scholar] [CrossRef]
- Rafique, S.; Gillani, S.S.; Nazir, R. Lead and Cadmium Toxic Effects on Human Health: A Review. J. Nutr. Food Sci. 2021, 11, 459. [Google Scholar]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Hossain Mondal, M.; Bhattarai, A.; Saha, B. A Comprehensive Review on the Sources, Essentiality and Toxicological Profile of Nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Malavolta, E.; Moraes, M.F. Nickel—From Toxic to Essential Nutrient. Better Crops 2007, 91, 26–27. [Google Scholar]
- MAATE Libro VI Anexo I del Texto Unificado de Legislacion Secundaria de Medio Ambiente 2017. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/TULSMA.pdf (accessed on 20 November 2024).
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Kumar, M.; Seth, A.; Singh, A.K.; Rajput, M.S.; Sikandar, M. Remediation Strategies for Heavy Metals Contaminated Ecosystem: A Review. Environ. Sustain. Indic. 2021, 12, 100155. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.A.; Ng, H.-S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A Critical Review on Various Remediation Approaches for Heavy Metal Contaminants Removal from Contaminated Soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef]
- Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandey, L.M. Recent Advances in Conventional and Contemporary Methods for Remediation of Heavy Metal-Contaminated Soils. 3 Biotech 2018, 8, 216. [Google Scholar] [CrossRef]
- Aljendeel, H.A. Removal of Heavy Metals Using Reverse Osmosis. J. Eng. 2011, 17, 647–658. [Google Scholar] [CrossRef]
- Benito, Y.; Ruíz, M.L. Reverse Osmosis Applied to Metal Finishing Wastewater. Desalination 2002, 142, 229–234. [Google Scholar] [CrossRef]
- Joo, S.H.; Tansel, B. Novel Technologies for Reverse Osmosis Concentrate Treatment: A Review. J. Environ. Manag. 2015, 150, 322–335. [Google Scholar] [CrossRef] [PubMed]
- d’Halluin, M.; Rull-Barrull, J.; Bretel, G.; Labrugère, C.; Le Grognec, E.; Felpin, F.-X. Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water. ACS Sustain. Chem. Eng. 2017, 5, 1965–1973. [Google Scholar] [CrossRef]
- Ghobadi, R.; Altaee, A.; Zhou, J.L.; Karbassiyazdi, E.; Ganbat, N. Effective Remediation of Heavy Metals in Contaminated Soil by Electrokinetic Technology Incorporating Reactive Filter Media. Sci. Total Environ. 2021, 794, 148668. [Google Scholar] [CrossRef]
- Xiao, H.; Low, Z.-X.; Gore, D.B.; Kumar, R.; Asadnia, M.; Zhong, Z. Porous Metal–Organic Framework-Based Filters: Synthesis Methods and Applications for Environmental Remediation. Chem. Eng. J. 2022, 430, 133160. [Google Scholar] [CrossRef]
- Bennedsen, L.R. Chapter 2—In Situ Chemical Oxidation: The Mechanisms and Applications of Chemical Oxidants for Remediation Purposes. In Chemistry of Advanced Environmental Purification Processes of Water; Søgaard, E.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 13–74. ISBN 978-0-444-53178-0. [Google Scholar]
- Koul, B.; Taak, P. Chemical Methods of Soil Remediation. In Biotechnological Strategies for Effective Remediation of Polluted Soils; Koul, B., Taak, P., Eds.; Springer: Singapore, 2018; pp. 77–84. ISBN 9789811324208. [Google Scholar]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent Advances in Soil Remediation Technology for Heavy Metal Contaminated Sites: A Critical Review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Bisone, S.; Blais, J.-F.; Mercier, G. Counter-Current Metal Leaching and Precipitation for Soil Remediation. Soil Sediment Contam. Int. J. 2013, 22, 856–875. [Google Scholar] [CrossRef]
- Fedje, K.K.; Yillin, L.; Strömvall, A.-M. Remediation of Metal Polluted Hotspot Areas through Enhanced Soil Washing—Evaluation of Leaching Methods. J. Environ. Manag. 2013, 128, 489–496. [Google Scholar] [CrossRef]
- Ekrami, E.; Pouresmaieli, M.; sadat Hashemiyoon, E.; Noorbakhsh, N.; Mahmoudifard, M. Nanotechnology: A Sustainable Solution for Heavy Metals Remediation. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100718. [Google Scholar] [CrossRef]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef]
- Zhou, D.; Cheng, Y.; Wan, Y. Remediation of Cadmium-Contaminated Soil Using Modified Activated Carbon Fiber Combined with Electrodynamic Remediation Technology. Rendiconti Lincei Sci. Fis. E Nat. 2024, 35, 655–671. [Google Scholar] [CrossRef]
- Muthuraman, R.M.; Murugappan, A.; Soundharajan, B. A Sustainable Material for Removal of Heavy Metals from Water: Adsorption of Cd(II), Pb(II) and Cu(II) Using Kinetic Mechanism. Desalination Water Treat. 2021, 220, 192–198. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered Nanomaterials for Water Treatment and Remediation: Costs, Benefits, and Applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef]
- Lens, P.N.; Vochten, P.M.; Speleers, L.; Verstraete, W.H. Direct Treatment of Domestic Wastewater by Percolation over Peat, Bark and Woodchips. Water Res. 1994, 28, 17–26. [Google Scholar] [CrossRef]
- Löser, C.; Seidel, H.; Hoffmann, P.; Zehnsdorf, A. Remediation of Heavy-Metal-Polluted River Sediments by Bioleaching Using the Percolation Principle; Technologisch Instituut vzw: Antwerpen, Belgium, 1999; pp. 213–222. ISBN 978-90-76019-11-6. Available online: https://www.researchgate.net/profile/Christian-Loeser-2/publication/263366180_Remediation_of_heavy-metal-polluted_river_sediments_by_bioleaching_using_the_percolation_principle/links/00b4953b669289f0ca000000/Remediation-of-heavy-metal-polluted-river-sediments-by-bioleaching-using-the-percolation-principle.pdf (accessed on 20 November 2024).
- Dissanayake, D.M.R.E.A.; Chathuranga, P.K.D.; Perera, P.I.; Vithanage, M.; Iqbal, M.C.M. Modeling of Pb(II) Adsorption by a Fixed-Bed Column. Bioremediation J. 2016, 20, 194–208. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M. A Review of Avocado Waste-Derived Adsorbents: Characterizations, Adsorption Characteristics, and Surface Mechanism. Chemosphere 2022, 296, 134036. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Driss Alami, S.B. Aprovechamiento de Hueso de Aceituna Biosorción de Iones Metálicos. Doctoral Thesis, Universidad de Granada, Granada, Spain, 2010. [Google Scholar]
- Abdelhamid, A.A.; Badr, M.H.; Mohamed, R.A.; Saleh, H.M. Using Agricultural Mixed Waste as a Sustainable Technique for Removing Stable Isotopes and Radioisotopes from the Aquatic Environment. Sustainability 2023, 15, 1600. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, an Efficient Method for Removing Heavy Metals from Industrial Effluents: A Review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Saini, S.; Gill, J.K.; Kaur, J.; Saikia, H.R.; Singh, N.; Kaur, I.; Katnoria, J.K. Biosorption as Environmentally Friendly Technique for Heavy Metal Removal from Wastewater. In Fresh Water Pollution Dynamics and Remediation; Qadri, H., Bhat, R.A., Mehmood, M.A., Dar, G.H., Eds.; Springer: Singapore, 2020; pp. 167–181. ISBN 9789811382772. [Google Scholar]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Saravanan, A.; Vo, D.-V.N. Advances in Biosorbents for Removal of Environmental Pollutants: A Review on Pretreatment, Removal Mechanism and Future Outlook. J. Hazard. Mater. 2021, 420, 126596. [Google Scholar] [CrossRef]
- Aryal, M.; Liakopoulou-Kyriakides, M. Bioremoval of Heavy Metals by Bacterial Biomass. Environ. Monit. Assess. 2015, 187, 4173. [Google Scholar] [CrossRef]
- Naseem Akthar, M.; Sivarama Sastry, K.; Maruthi Mohan, P. Mechanism of Metal Ion Biosorption by Fungal Biomass. Biometals 1996, 9, 21–28. [Google Scholar] [CrossRef]
- Lucaci, A.-R.; Bulgariu, L. Biosorption of Technologically Valuable Metal Ions on Algae Wastes: Laboratory Studies and Applicability. Water 2024, 16, 512. [Google Scholar] [CrossRef]
- van Wyk, C.S. Removal of Heavy Metals from Metal-Containing Effluent by Yeast Biomass. Afr. J. Biotechnol. 2011, 10, 11557–11561. [Google Scholar]
- Mathew, B.B.; Jaishankar, M.; Biju, V.G.; Beeregowda, K.N. Role of Bioadsorbents in Reducing Toxic Metals. J. Toxicol. 2016, 2016, 4369604. [Google Scholar] [CrossRef]
- Özer, A.; Özer, D.; Özer, A. The Adsorption of Copper(II) Ions on to Dehydrated Wheat Bran (DWB): Determination of the Equilibrium and Thermodynamic Parameters. Process Biochem. 2004, 39, 2183–2191. [Google Scholar] [CrossRef]
- Özer, A.; Pirinççi, H.B. The Adsorption of Cd(II) Ions on Sulphuric Acid-Treated Wheat Bran. J. Hazard. Mater. 2006, 137, 849–855. [Google Scholar] [CrossRef]
- Kumar, U.; Bandyopadhyay, M. Sorption of Cadmium from Aqueous Solution Using Pretreated Rice Husk. Bioresour. Technol. 2006, 97, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Thomas Choong, S.Y. Rice Husk as a Potentially Low-Cost Biosorbent for Heavy Metal and Dye Removal: An Overview. Desalination 2005, 175, 305–316. [Google Scholar] [CrossRef]
- Song, S.-T.; Hau, Y.-F.; Saman, N.; Johari, K.; Cheu, S.-C.; Kong, H.; Mat, H. Process Analysis of Mercury Adsorption onto Chemically Modified Rice Straw in a Fixed-Bed Adsorber. J. Environ. Chem. Eng. 2016, 4, 1685–1697. [Google Scholar] [CrossRef]
- Loukidou, M.X.; Zouboulis, A.I. Biosorption of Toxic Metals. In Water Encyclopedia; Lehr, J.H., Keeley, J., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Annadurai, G.; Juang, R.S.; Lee, D.J. Adsorption of Heavy Metals from Water Using Banana and Orange Peels. Water Sci. Technol. 2003, 47, 185–190. [Google Scholar] [CrossRef]
- Demirbas, E.; Kobya, M.; Senturk, E.; Ozkan, T. Adsorption Kinetics for the Removal of Chromium (VI) from Aqueous Solutions on the Activated Carbons Prepared from Agricultural Wastes. Water SA 2004, 30, 533–539. [Google Scholar] [CrossRef]
- Dhakal, R.P.; Ghimire, K.N.; Inoue, K. Adsorptive Separation of Heavy Metals from an Aquatic Environment Using Orange Waste. Hydrometallurgy 2005, 79, 182–190. [Google Scholar] [CrossRef]
- Leyva-Ramos, R.; Bernal-Jacome, L.A.; Acosta-Rodriguez, I. Adsorption of Cadmium(II) from Aqueous Solution on Natural and Oxidized Corncob. Sep. Purif. Technol. 2005, 45, 41–49. [Google Scholar] [CrossRef]
- Marshall, W.E.; Wartelle, L.H.; Boler, D.E.; Johns, M.M.; Toles, C.A. Enhanced Metal Adsorption by Soybean Hulls Modified with Citric Acid. Bioresour. Technol. 1999, 69, 263–268. [Google Scholar] [CrossRef]
- Nasiruddin Khan, M.; Farooq Wahab, M. Characterization of Chemically Modified Corncobs and Its Application in the Removal of Metal Ions from Aqueous Solution. J. Hazard. Mater. 2007, 141, 237–244. [Google Scholar] [CrossRef]
- Sarin, V.; Pant, K.K. Removal of Chromium from Industrial Waste by Using Eucalyptus Bark. Bioresour. Technol. 2006, 97, 15–20. [Google Scholar] [CrossRef]
- Miralles, N.; Valderrama, C.; Casas, I.; Martínez, M.; Florido, A. Cadmium and Lead Removal from Aqueous Solution by Grape Stalk Wastes: Modeling of a Fixed-Bed Column. J. Chem. Eng. Data 2010, 55, 3548–3554. [Google Scholar] [CrossRef]
- Raulino, G.S.C.; Vidal, C.B.; Lima, A.C.A.; Melo, D.Q.; Oliveira, J.T.; Nascimento, R.F. Treatment Influence on Green Coconut Shells for Removal of Metal Ions: Pilot-Scale Fixed-Bed Column. Environ. Technol. 2014, 35, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Bazzo, A.; Adebayo, M.A.; Dias, S.L.P.; Lima, E.C.; Vaghetti, J.C.P.; De Oliveira, E.R.; Leite, A.J.B.; Pavan, F.A. Avocado Seed Powder: Characterization and Its Application for Crystal Violet Dye Removal from Aqueous Solutions. Desalination Water Treat. 2016, 57, 15873–15888. [Google Scholar] [CrossRef]
- Boeykens, S.P.; Redondo, N.; Obeso, R.A.; Caracciolo, N.; Vázquez, C. Chromium and Lead Adsorption by Avocado Seed Biomass Study through the Use of Total Reflection X-Ray Fluorescence Analysis. Appl. Radiat. Isot. 2019, 153, 108809. [Google Scholar] [CrossRef]
- Díaz-Muñoz, L.L.; Bonilla-Petriciolet, A.; Reynel-Ávila, H.E.; Mendoza-Castillo, D.I. Sorption of Heavy Metal Ions from Aqueous Solution Using Acid-Treated Avocado Kernel Seeds and Its FTIR Spectroscopy Characterization. J. Mol. Liq. 2016, 215, 555–564. [Google Scholar] [CrossRef]
- Rangel, A.V.; Becerra, M.G.; Guerrero-Amaya, H.; Ballesteros, L.M.; Mercado, D.F. Sulfate Radical Anion Activated Agro-Industrial Residues for Cr(VI) Adsorption: Is This Activation Process Technically and Economically Feasible? J. Clean. Prod. 2021, 289, 125793. [Google Scholar] [CrossRef]
- Wanja, N.E.; Murungi, J.; Wanjau, R.; Hassanali, A. Application of Chemically Modified Avocado Seed for Removal of Copper (II), Lead(II), and Cadmium(II) Ions from Aqueous Solutions. Int. J. Res. Eng. Appl. Sci. 2016, 6, 1–15. [Google Scholar]
- Aiyesanmi, A.F.; Adebayo, M.A.; Arowojobe, Y. Biosorption of Lead and Cadmium from Aqueous Solution in Single and Binary Systems Using Avocado Pear Exocarp: Effects of Competing Ions. Anal. Lett. 2020, 53, 2868–2885. [Google Scholar] [CrossRef]
- Canadian Society of Soil Science. Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Pinawa, MB, Canada; Boca Raton, FL, USA, 2008; ISBN 978-0-8493-3586-0. [Google Scholar]
- Cabrera Andrade, L.F. Bioadsorción de Iones de Plomo y Cromo Procedentes de Aguas Residuales Utilizando la Cáscara del Tomate de Árbol (Solanum betaceum). Bachelor’s Thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2017. [Google Scholar]
- García-González, R.; Gomez-Espinosa, R.M.; Ávila-Pérez, P.; García-Gaitán, B.; García-Rivas, J.L.; Zavala-Arce, R.E. Estudio de biosorción de Cu2+ en el criogel quitosano-celulosa. Rev. Mex. Ing. Quím. 2016, 15, 311–322. [Google Scholar] [CrossRef]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC, USA, 2023. [Google Scholar]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm Models for Adsorption of Heavy Metals from Water—A Review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef] [PubMed]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Larenas Uría, C.; Andrango, D.; Inga, P. Estudio isotérmico de biosorción de plomo en aguas utilizando residuos vegetales. La Granja 2008, 8, 3. [Google Scholar] [CrossRef]
- Souza, R.S.; Chaves, L.H.G.; Fernandes, J.D. Isotermas de Langmuir e de Freundlich Na Descrição Da Adsorção de Zinco Em Solos Do Estado Da Paraíba. Rev. Bras. Ciênc. Agrár. 2007, 2, 123–127. [Google Scholar] [CrossRef]
- Lim, W.-R.; Kim, S.W.; Lee, C.-H.; Choi, E.-K.; Oh, M.H.; Seo, S.N.; Park, H.-J.; Hamm, S.-Y. Performance of Composite Mineral Adsorbents for Removing Cu, Cd, and Pb Ions from Polluted Water. Sci. Rep. 2019, 9, 13598. [Google Scholar] [CrossRef] [PubMed]
- Carro de Diego, L.M. Eliminación de Mercurio de Efluentes Acuosos con Materiales de Bajo Coste: Proceso Combinado de Bioadsorción-Reducción. Doctoral Thesis, Universidade da Coruña, A Coruña, Spain, 2012. [Google Scholar]
- Patel, H. Review on Solvent Desorption Study from Exhausted Adsorbent. J. Saudi Chem. Soc. 2021, 25, 101302. [Google Scholar] [CrossRef]
- Bassareh, H.; Karamzadeh, M.; Movahedirad, S. Synthesis and Characterization of Cost-Effective and High-Efficiency Biochar for the Adsorption of Pb2+ from Wastewater. Sci. Rep. Nat. Publ. Group 2023, 13, 15608. [Google Scholar] [CrossRef] [PubMed]
- Chimdessa, M.A.; Ejeta, B.A. Removal of Cadmium, Copper and Lead from Aqueous Solution Using Activated Carbon Prepared from Avocado Kernel. Orient. J. Chem. 2022, 38, 65–71. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Said, G.F.; Ibrahim, G.A.A.; Elnashar, A.A.S. Effective Removal of Hexavalent Chromium from Water by Sustainable Nano-Scaled Waste Avocado Seeds: Adsorption Isotherm, Thermodynamics, Kinetics, and Error Function. Biomass Convers. Biorefinery 2024, 14, 14725–14743. [Google Scholar] [CrossRef]
- Aymacaña Albán, A.E. Caracterización Bromatológica de La Cáscara de Aguacate (Persea americana) y Posterior Extracción e Identificación de La Fracción Con Mayor Actividad Antimicrobiana y Antioxidante. Bachelor’s Thesis, Universidad Central del Ecuador, Quito, Ecuador, 2018. [Google Scholar]
- Salmerón Ruiz, M.L. Fracción Indigestible, Bioaccesibilidad in Vitro y Actividad Antioxidante, de Compuestos Fenólicos de La Cáscara de Aguacate Cv. “Hass”. Master’s Thesis, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico, 2014. [Google Scholar]
- Zaldivar-Ortega, A.K.; Barrera-Jiménez, J.A.; Cenobio-Galindo, A.D.J.; Pérez-Soto, E.; Franco-Fernández, M.J.; Campos-Montiel, R.G. Potencial Uso de La Cáscara y Semilla de Aguacate Como Fuente de Compuestos Bioactivos Con Actividades Funcionales Para Un Desarrollo Sustentable. Bol. Cienc. Agropecu. ICAP 2023, 9, 30–33. [Google Scholar] [CrossRef]
- Sánchez-Quezada, V.; Loarca-Piña, G. Caracterización química, fisicoquímica y nutracéutica de la semilla del aguacate (Persea americana Mill) para el uso en la industria. Sánchez-Quezada Loarca-Piña 2022, 7, 297–303. [Google Scholar]
- Zamora Velazco, G.N. Obtención de Carbón Activado a Partir de Semillas de dos Palmeras de la Amazonía Peruana “Shapaja” (Attalea phalerata) y “Aguaje” (Mauritia flexuosa). Bachelor’s Thesis, Universidad Nacional Agraria la Molina, Lima, Peru, 2010. [Google Scholar]
- Ordóñez Ochoa, A.E. Determinación de la Capacidad Adsorbente de los Residuos de la Industria de la papa (Solanum tuberosum) para Remoción de Metales Pesados en Aguas Contaminadas. Bachelor’s Thesis, Universidad Politécnica Saleciana, Cuenca, Ecuador, 2017. [Google Scholar]
- Zhong, L.; Peng, X.; Yang, D.; Sun, R. Adsorption of Heavy Metals by a Porous Bioadsorbent from Lignocellulosic Biomass Reconstructed in an Ionic Liquid. J. Agric. Food Chem. 2012, 60, 5621–5628. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, R.; Xuanjun, L.; Adin, A.; Valiyaveettil, S. Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Water. ACS Sustain. Chem. Eng. 2015, 3, 1117–1124. [Google Scholar] [CrossRef]
- Mqehe-Nedzivhe, K.C.; Makhado, K.; Olorundare, O.F.; Arotiba, O.A.; Makhatha, E.; Nomngongo, P.N.; Mabuba, N. Bio-Adsorbents for the Removal of Heavy Metals from Water. In Arsenic—Analytical and Toxicological Studies; Stoytcheva, M., Zlatev, R., Eds.; InTech: London, UK, 2018; ISBN 978-1-78923-516-6. [Google Scholar]
- Cortez, P. Análisis de Los Espectros de Infrarrojo; Instituto de Investigaciones en Guadalajara: Guadalajara, Mexico, 2020. [Google Scholar]
- Aranda-García, E.; Cristiani-Urbina, E. Effect of PH on Hexavalent and Total Chromium Removal from Aqueous Solutions by Avocado Shell Using Batch and Continuous Systems. Environ. Sci. Pollut. Res. 2019, 26, 3157–3173. [Google Scholar] [CrossRef]
- Vazquez-Palma, D.E.; Netzahuatl-Munoz, A.R.; Pineda-Camacho, G.; Cristiani-Urbina, E. Biosorptive Removal of Nickel(II) Ions from Aqueous Solutions by Hass Avocado (Persea americana Mill. Var. Hass) Shell as an Effective and Low-Cost Biosorbent. Fresenius Environ. Bull. 2017, 26, 3501–3513. [Google Scholar]
- Devi, R.; Singh, V.; Kumar, A. COD and BOD Reduction from Coffee Processing Wastewater Using Avacado Peel Carbon. Bioresour. Technol. 2008, 99, 1853–1860. [Google Scholar] [CrossRef]
- Said, M.I.; Abustam, E.; Wahab, A.W.; Taba, P.; Gani, A.; Wahid, A.M. Effect of Ethanol Used in a Degreasing Process on Bali Cattle Bones on the Physicochemical Properties of Extracted Collagen. Bulg. J. Agric. Sci. 2019, 25, 418–423. [Google Scholar]
- Olasehinde, E.F.; Adegunloye, A.V.; Adebayo, M.A.; Oshodi, A.A. Sequestration of Aqueous Lead(II) Using Modified and Unmodified Red Onion Skin. Anal. Lett. 2018, 51, 2710–2732. [Google Scholar] [CrossRef]
- Boeykens, S.P.; Saralegui, A.; Caracciolo, N.; Piol, M.N. Agroindustrial Waste for Lead and Chromium Biosorption. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 341–350. [Google Scholar] [CrossRef]
- Muluh, N.S. Central Composite Design Analysis and Optimization of Cadmium Adsorption from Synthetic Wastewater by Avocado Seed Activated Carbon. Int. J. Adv. Res. Dev. 2017, 2, 652–661. [Google Scholar]
- Fernández Villalón, L.M.; Calzado Lamela, O.; Adrian, D.; Carmenaty, C. Factores de mayor influencia en la adsorción de metales pesados por biomasa seca de Kluyveromyces Marxianus CCEBI 201. Tecnol. Quím. 2018, 38, 335–345. [Google Scholar]
- Abbas, S.H.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of Heavy Metals: A Review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- Astudillo, S.; Vera, L. Evaluación del poder biosorbente de la hoja de maíz en la remoción de metales pesados. Afinidad 2019, 77, 182–188. [Google Scholar]
- Romero Cano, L.A. Preparación y uso de Cáscaras de Naranja Como Biosorbente para la Remoción de Compuestos Orgánicos. Bachelor’s Thesis, CIDETEQ, Santiago de Querétaro, Mexico, 2013. [Google Scholar]
- Jung, M.-W.; Ahn, K.-H.; Lee, Y.; Kim, K.-P.; Rhee, J.-S.; Tae Park, J.; Paeng, K.-J. Adsorption Characteristics of Phenol and Chlorophenols on Granular Activated Carbons (GAC). Microchem. J. 2001, 70, 123–131. [Google Scholar] [CrossRef]
- Chatterjee, A.; Abraham, J. Desorption of Heavy Metals from Metal Loaded Sorbents and E-Wastes: A Review. Biotechnol. Lett. 2019, 41, 319–333. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Namasivayam, C. Activated Carbon from Coconut Coirpith as Metal Adsorbent: Adsorption of Cd(II) from Aqueous Solution. Adv. Environ. Res. 2003, 7, 471–478. [Google Scholar] [CrossRef]
Range of Wavelength (cm−1) | Bond | Functional Group | Wavelength Band Identified (cm−1) |
---|---|---|---|
3650–3200 | O-H | Hydroxyl | 3299.15 |
2950–2800 | C-H, C-H2 | Alkane | 2926.02 |
2854.17 | |||
1700–1740 | C=O | Carbonyl | 1743.07 |
1640–1610 | C=C | Alkene | 1623.06 |
1450–1375 | C-C | Alkane | 1457.96 |
1300–1000 | C-O-C | Cellulose | 1079.15 |
Parameter | Cd | Hg | Pb | Ni |
---|---|---|---|---|
Equation | y = 0.4031x − 0.004 | y = 0.0009x − 0.0011 | y = 0.05104x − 0.01172 | Y=0.0118x − 0.00001 |
R2 | 0.9999 | 0.9980 | 0.9993 | 0.9999 |
LOD (mg/L) | 0.01 | 0.005 | 0.1 | 0.1 |
LOQ (mg/L) | 0.03 | 0.010 | 0.3 | 0.3 |
Metal | Pretreatment | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
qm [mg/g] | KL [L/mg] | R2 | KF | 1/n | R2 | ||
Cadmium | Ethanol | 0.332 | −5.889 | 0.996 | 0.255 | 0.253 | 0.590 |
Ethylene glycol | 0.176 | −0.818 | 0.929 | 0.125 | 0.454 | 0.443 | |
Mercury | Ethanol | 0.043 | 15.194 | 0.999 | 0.030 | 0.267 | 0.887 |
Ethylene glycol | 0.036 | 13.653 | 0.988 | 0.024 | 0.282 | 0.906 | |
Lead | Ethanol | 2.573 | 11.501 | 0.999 | 2.216 | 0.066 | 0.712 |
Ethylene glycol | 1.711 | 2.270 | 0.999 | 1.354 | 0.075 | 0.970 | |
Nickel | Ethanol | 0.209 | −1.280 | 0.989 | 0.307 | −0.091 | 0.532 |
Ethylene glycol | 0.097 | −1.981 | 0.992 | 0.150 | −0.131 | 0.579 |
Bio-Adsorbent | Metal | Bed Height × Inner Diameter (cm) | Ci (mg/L) | qmax [mg/g] | Reference |
---|---|---|---|---|---|
Hydrilla verticillata biomass | Pb | 10 × 1.0 | 50 | 82.39 | [98] |
Orange peel | Pb | 24 × 1.3 | ≈10 | 57 | [99] |
Cd | ≈6 | 22 | |||
Grape stalk wastes | Pb | 7.2 × 1.0 | 60 | 45.49 | [100] |
Cd | 30 | 18.76 | |||
Coconut shells | Ni | 160 × 62 | 200 | 3 (0.051 mmol/g) | [101] |
Rice straw | Hg | 4.5 × 1 | 200 | 370.37 | [102] |
Avocado peel and seed | Cd | 2 × 1 | 35 | 0.332(ethanol) | Present study |
Hg | 15 | 0.043(ethanol) | |||
Pb | 130 | 2.573(ethanol) | |||
Ni | 25 | 0.209(ethanol) |
Metal | Activator | Best Adsorption Ci [mg/L] | Desorption Percentage [%] | ||
---|---|---|---|---|---|
H2O | HCl 0.01 mol/L | HCl 1 mol/L | |||
Cd | Ethanol | 20 | 21.6 | 43.9 | 89.6 |
Ethylene glycol | 15 | 23.2 | 44.1 | 92.1 | |
Ni | Ethanol | 12 | 39.3 | 96.9 | 53.9 |
Ethylene glycol | 6 | 41.3 | 89.8 | 64.3 | |
Pb | Ethanol | 90 | 4.0 | 28.1 | 95.1 |
Ethylene glycol | 60 | 1.6 | 39.1 | 97.7 | |
Hg | Ethanol | 10 | 3.2 | 12.8 | 42.3 |
Ethylene glycol | 5 | 4.1 | 13.6 | 45.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Naranjo, A.; Mayorga-Naranjo, C.; Vélez-Terreros, P.Y.; Yánez-Jácome, G.S.; Oviedo-Chávez, A.; Navarrete, H.; Vinueza-Galáraga, J.; Romero-Estévez, D. Fixed-Bed Columns of Avocado (Persea americana Hass.) Seed and Peel Biomass as a Retainer for Contaminating Metals. Appl. Sci. 2024, 14, 10851. https://doi.org/10.3390/app142310851
Gómez-Naranjo A, Mayorga-Naranjo C, Vélez-Terreros PY, Yánez-Jácome GS, Oviedo-Chávez A, Navarrete H, Vinueza-Galáraga J, Romero-Estévez D. Fixed-Bed Columns of Avocado (Persea americana Hass.) Seed and Peel Biomass as a Retainer for Contaminating Metals. Applied Sciences. 2024; 14(23):10851. https://doi.org/10.3390/app142310851
Chicago/Turabian StyleGómez-Naranjo, Andrés, Cristina Mayorga-Naranjo, Pamela Y. Vélez-Terreros, Gabriela S. Yánez-Jácome, Augusto Oviedo-Chávez, Hugo Navarrete, Julio Vinueza-Galáraga, and David Romero-Estévez. 2024. "Fixed-Bed Columns of Avocado (Persea americana Hass.) Seed and Peel Biomass as a Retainer for Contaminating Metals" Applied Sciences 14, no. 23: 10851. https://doi.org/10.3390/app142310851
APA StyleGómez-Naranjo, A., Mayorga-Naranjo, C., Vélez-Terreros, P. Y., Yánez-Jácome, G. S., Oviedo-Chávez, A., Navarrete, H., Vinueza-Galáraga, J., & Romero-Estévez, D. (2024). Fixed-Bed Columns of Avocado (Persea americana Hass.) Seed and Peel Biomass as a Retainer for Contaminating Metals. Applied Sciences, 14(23), 10851. https://doi.org/10.3390/app142310851