The Use of Smart Rings in Health Monitoring—A Meta-Analysis
Abstract
:1. Introduction
1.1. IoMT and Wearable Devices
1.2. Smart Rings
1.3. Aim of the Study
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Data Extraction
2.3. Quality and Risk of Bias Assessment
2.4. Data Synthesis and Analysis
- δ represents the average bias across studies (mean difference between the two methods across all studies).
- τ2 represents the between-study variation, capturing the variability in differences across studies.
- σ2 signifies the average within-study variation in differences.
3. Results
3.1. Study Selection and Description
3.2. Sleep Quality
3.3. Cardiovascular and SaO2 Parameters
4. Discussion
4.1. Meta-Analysis on Sleep Outcomes
4.2. Meta-Analysis on Cardiovascular Outcomes
4.3. Expanding the Role of Smart Rings in Digital Health
4.4. Challenges and Future Directions
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ashfaq, Z.; Rafay, A.; Mumtaz, R.; Zaidi, S.M.H.; Saleem, H.; Zaidi, S.A.R.; Mumtaz, S.; Haque, A. A review of enabling technologies for Internet of Medical Things (IoMT) Ecosystem. Ain Shams Eng. J. 2022, 13, 101660. [Google Scholar] [CrossRef]
- Hemmati, A.; Rahmani, A.M. Internet of Medical Things in the COVID-19 Era: A Systematic Literature Review. Sustainability 2022, 14, 12637. [Google Scholar] [CrossRef]
- Razdan, S.; Sharma, S. Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies. IETE Tech. Rev. 2022, 39, 775–788. [Google Scholar] [CrossRef]
- Benkhadra, K.; Alahdab, F.; Tamhane, S.; Wang, Z.; Prokop, L.J.; Hirsch, I.B.; Raccah, D.; Riveline, J.P.; Kordonouri, O.; Murad, M.H. Real-time continuous glucose monitoring in type 1 diabetes: A systematic review and individual patient data meta-analysis. Clin. Endocrinol. 2017, 86, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Arora, S. IoMT (Internet of Medical Things): Reducing Cost While Improving Patient Care. IEEE Pulse 2020, 11, 24–27. [Google Scholar] [CrossRef]
- Pratap Singh, R.; Javaid, M.; Haleem, A.; Vaishya, R.; Ali, S. Internet of Medical Things (IoMT) for orthopaedic in COVID-19 pandemic: Roles, challenges, and applications. J. Clin. Orthop. Trauma 2020, 11, 713–717. [Google Scholar] [CrossRef]
- Basatneh, R.; Najafi, B.; Armstrong, D.G. Health Sensors, Smart Home Devices, and the Internet of Medical Things: An Opportunity for Dramatic Improvement in Care for the Lower Extremity Complications of Diabetes. J. Diabetes Sci. Technol. 2018, 12, 577–586. [Google Scholar] [CrossRef]
- Costa, P.D.; Rodrigues, P.P.; Reis, A.H.; Costa-Pereira, A. A review on remote monitoring technology applied to implantable electronic cardiovascular devices. Telemed. J. E Health 2010, 16, 1042–1050. [Google Scholar] [CrossRef]
- Barbalho, I.M.P.; Fernandes, F.; Barros, D.M.S.; Paiva, J.C.; Henriques, J.; Morais, A.H.F.; Coutinho, K.D.; Coelho Neto, G.C.; Chioro, A.; Valentim, R.A.M. Electronic health records in Brazil: Prospects and technological challenges. Front. Public Health 2022, 10, 963841. [Google Scholar] [CrossRef]
- Roehrs, A.; da Costa, C.A.; Righi, R.D.R.; Rigo, S.J.; Wichman, M.H. Toward a Model for Personal Health Record Interoperability. IEEE J. Biomed. Health Inf. 2019, 23, 867–873. [Google Scholar] [CrossRef]
- Hameed, S.S.; Hassan, W.H.; Abdul Latiff, L.; Ghabban, F. A systematic review of security and privacy issues in the internet of medical things; the role of machine learning approaches. PeerJ Comput. Sci. 2021, 7, e414. [Google Scholar] [CrossRef] [PubMed]
- Design Considerations and Pre-market Submission Recommendations for Interoperable Medical Devices|Guidance for Industry and Food and Drug Administration Staff. Available online: https://www.fda.gov/media/95636/download (accessed on 9 October 2024).
- Elsayeh, M.; Ezzat, K.A.; El-Nashar, H.; Omran, L.N. Cybersecurity Architecture for the Internet of Medical Things and Connected Devices Using Blockchain. Biomed. Eng-App Bas C 2021, 33, 2150013. [Google Scholar] [CrossRef]
- Mohammadi, D. Features Data security in the brave new world of eHealth. Lancet Resp. Med. 2016, 4, 611. [Google Scholar] [CrossRef] [PubMed]
- Asgari Mehrabadi, M. Holistic Health Monitoring and Personalized Intervention for Well-being Promotion. Available online: https://escholarship.org/uc/item/2dv4h97k (accessed on 9 October 2024).
- Bisht, R.S.; Jain, S.; Tewari, N. Study of Wearable IoT devices in 2021: Analysis & Future Prospects. In Proceedings of the 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 28–30 April 2021; pp. 577–581. [Google Scholar]
- Partheniadis, K.; Stavrakis, M. Design and evaluation of a digital wearable ring and a smartphone application to help monitor and manage the effects of Raynaud’s phenomenon. Multimed. Tools Appl. 2019, 78, 3365–3394. [Google Scholar] [CrossRef]
- Magno, M.; Salvatore, G.A.; Jokic, P.; Benini, L. Self-Sustainable Smart Ring for Long-Term Monitoring of Blood Oxygenation. IEEE Access 2019, 7, 115400–115408. [Google Scholar] [CrossRef]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.Y.; Xie, Y.; Gao, F.; Xu, S.; Wu, X.H.; Ye, Z.W. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR Mhealth Uhealth 2020, 8, e18907. [Google Scholar] [CrossRef]
- Tosi, F.; Cavallo, F.; Pistolesi, M.; Fiorini, L.; Rovini, E.; Becchimanzi, C. Designing Smart Ring for the Health of the Elderly: The CloudIA Project. In Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021), Online, 13–18 June 2021; Lecture Notes in Networks and Systems. pp. 384–392. [Google Scholar]
- Cohen, G.L.; Garcia, J. Educational Theory, Practice, and Policy and the Wisdom of Social Psychology. Policy Insights Behav. Brain Sci. 2014, 1, 13–20. [Google Scholar] [CrossRef]
- Hinchliffe, N.; Capehorn, M.S.; Bewick, M.; Feenie, J. The Potential Role of Digital Health in Obesity Care. Adv. Ther. 2022, 39, 4397–4412. [Google Scholar] [CrossRef]
- FDA Allows Marketing of First Direct-to-Consumer App for Contraceptive Use to Prevent Pregnancy. Available online: https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-direct-consumer-app-contraceptive-use-prevent-pregnancy (accessed on 9 October 2024).
- Xu, W.T.; Yang, H.Q.; Chen, J.Z.; Luo, C.W.; Zhang, J.; Zhao, Y.L.; Li, W.J. WashRing: An Energy-Efficient and Highly Accurate Handwashing Monitoring System via Smart Ring. IEEE Trans. Mob. Comput. 2024, 23, 971–984. [Google Scholar] [CrossRef]
- Zhang, X.; Kadimisetty, K.; Yin, K.; Ruiz, C.; Mauk, M.G.; Liu, C.C. Smart ring: A wearable device for hand hygiene compliance monitoring at the point-of-need. Microsyst. Technol. 2019, 25, 3105–3110. [Google Scholar] [CrossRef]
- Lee, S.; Song, Y.; Lee, J.; Oh, J.; Lim, T.H.; Ahn, C.; Kim, I.Y. Development of Smart-Ring-Based Chest Compression Depth Feedback Device for High Quality Chest Compressions: A Proof-of-Concept Study. Biosensors 2021, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Preston, L.; Carroll, C.; Gardois, P.; Paisley, S.; Kaltenthaler, E. Improving search efficiency for systematic reviews of diagnostic test accuracy: An exploratory study to assess the viability of limiting to MEDLINE, EMBASE and reference checking. Syst. Rev. 2015, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Schunemann, H.J.; Oxman, A.D.; Brozek, J.; Glasziou, P.; Jaeschke, R.; Vist, G.E.; Williams, J.W., Jr.; Kunz, R.; Craig, J.; Montori, V.M.; et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008, 336, 1106–1110. [Google Scholar] [CrossRef]
- Rundo, J.V.; Downey, R. Polysomnography. In Clinical Neurophysiology: Basis and Technical Aspects; Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 381–392. [Google Scholar]
- Jubran, A. Pulse oximetry. Crit. Care 2015, 19, 272. [Google Scholar] [CrossRef]
- Tipton, E.; Shuster, J. A framework for the meta-analysis of Bland-Altman studies based on a limits of agreement approach. Stat. Med. 2017, 36, 3621–3635. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Tipton, E. Small sample adjustments for robust variance estimation with meta-regression. Psychol. Methods 2015, 20, 375–393. [Google Scholar] [CrossRef]
- Altini, M.; Kinnunen, H. The Promise of Sleep: A Multi-Sensor Approach for Accurate Sleep Stage Detection Using the Oura Ring. Sensors 2021, 21, 4302. [Google Scholar] [CrossRef]
- Asgari Mehrabadi, M.; Azimi, I.; Sarhaddi, F.; Axelin, A.; Niela-Vilen, H.; Myllyntausta, S.; Stenholm, S.; Dutt, N.; Liljeberg, P.; Rahmani, A.M. Sleep Tracking of a Commercially Available Smart Ring and Smartwatch Against Medical-Grade Actigraphy in Everyday Settings: Instrument Validation Study. JMIR Mhealth Uhealth 2020, 8, e20465. [Google Scholar] [CrossRef] [PubMed]
- Boukhayma, A.; Barison, A.; Haddad, S.; Caizzone, A. Ring-Embedded Micro-Power mm-Sized Optical Sensor for Accurate Heart Beat Monitoring. IEEE Access 2021, 9, 127217–127225. [Google Scholar] [CrossRef]
- Cao, R.; Azimi, I.; Sarhaddi, F.; Niela-Vilen, H.; Axelin, A.; Liljeberg, P.; Rahmani, A.M. Accuracy Assessment of Oura Ring Nocturnal Heart Rate and Heart Rate Variability in Comparison With Electrocardiography in Time and Frequency Domains: Comprehensive Analysis. J. Med. Internet Res. 2022, 24, e27487. [Google Scholar] [CrossRef] [PubMed]
- Chee, N.; Ghorbani, S.; Golkashani, H.A.; Leong, R.L.F.; Ong, J.L.; Chee, M.W.L. Multi-Night Validation of a Sleep Tracking Ring in Adolescents Compared with a Research Actigraph and Polysomnography. Nat. Sci. Sleep. 2021, 13, 177–190. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Rosas, L.; Colrain, I.M.; Baker, F.C. The Sleep of the Ring: Comparison of the OURA Sleep Tracker Against Polysomnography. Behav. Sleep. Med. 2019, 17, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, S.; Golkashani, H.A.; Chee, N.I.Y.N.; Teo, T.B.; Dicom, A.R.; Yilmaz, G.; Leong, R.L.F.; Ong, J.L.; Chee, M.W.L. Multi-Night at-Home Evaluation of Improved Sleep Detection and Classification with a Memory-Enhanced Consumer Sleep Tracker. Nat. Sci. Sleep. 2022, 14, 645–660. [Google Scholar] [CrossRef]
- Kainec, K.A.; Caccavaro, J.; Barnes, M.; Hoff, C.; Berlin, A.; Spencer, R.M.C. Evaluating Accuracy in Five Commercial Sleep-Tracking Devices Compared to Research-Grade Actigraphy and Polysomnography. Sensors 2024, 24, 635. [Google Scholar] [CrossRef]
- Kinnunen, H.; Rantanen, A.; Kenttä, T.; Koskimäki, H. Feasible assessment of recovery and cardiovascular health: Accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef]
- Kwon, S.; Hong, J.; Choi, E.K.; Lee, B.; Baik, C.; Lee, E.; Jeong, E.R.; Koo, B.K.; Oh, S.; Yi, Y. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study. J. Med. Internet Res. 2020, 22, e16443. [Google Scholar] [CrossRef]
- Lee, T.; Cho, Y.; Cha, K.S.; Jung, J.; Cho, J.; Kim, H.; Kim, D.; Hong, J.; Lee, D.; Keum, M.; et al. Accuracy of 11 Wearable, Nearable, and Airable Consumer Sleep Trackers: Prospective Multicenter Validation Study. JMIR Mhealth Uhealth 2023, 11, e50983. [Google Scholar] [CrossRef]
- Mastrototaro, J.J.; Leabman, M.; Shumate, J.; Tompkins, K.L. Performance of a Wearable Ring in Controlled Hypoxia: A Prospective Observational Study. JMIR Form. Res. 2024, 8, e54256. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Sargent, C.; Roach, G.D. A Validation of Six Wearable Devices for Estimating Sleep, Heart Rate and Heart Rate Variability in Healthy Adults. Sensors 2022, 22, 6317. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.L.; Golkashani, H.A.; Ghorbani, S.; Wong, K.F.; Chee, N.I.Y.N.; Willoughby, A.R.; Chee, M.W.L. Selecting a sleep tracker from EEG-based, iteratively improved, low-cost multisensor, and actigraphy-only devices. Sleep Health 2024, 10, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Schukraft, S.; Haddad, S.; Faucherre, Y.; Arroyo, D.; Togni, M.; Barison, A.; Boukhayma, A.; Cook, S.; Caizzone, A. Remote blood pressure monitoring with a wearable photoplethysmographic device in patients undergoing coronary angiography: The senbiosys substudy. Blood Press. Monit. 2022, 27, 402–407. [Google Scholar] [CrossRef]
- Stone, J.D.; Rentz, L.E.; Forsey, J.; Ramadan, J.; Markwald, R.R.; Finomore, V.S.; Galster, S.M.; Rezai, A.; Hagen, J.A. Evaluations of Commercial Sleep Technologies for Objective Monitoring During Routine Sleeping Conditions. Nat. Sci. Sleep. 2020, 12, 821–842. [Google Scholar] [CrossRef]
- Stone, J.D.; Ulman, H.K.; Tran, K.; Thompson, A.G.; Halter, M.D.; Ramadan, J.H.; Stephenson, M.; Finomore, V.; Galster, S.M.; Rezai, A.R.; et al. Assessing the Accuracy of Popular Commercial Technologies That Measure Resting Heart Rate and Heart Rate Variability. Front. Sports Act. Liv 2021, 3, 585870. [Google Scholar] [CrossRef]
- Svensson, T.; Madhawa, K.; Nt, H.; Chung, U.I.; Kishi, A. Validity and reliability of the Oura Ring Generation 3 (Gen3) with Oura sleep staging algorithm 2.0 (OSSA 2.0) when compared to multi-night ambulatory polysomnography: A validation study of 96 participants and 421,045 epochs. Sleep Med. 2024, 115, 251–263. [Google Scholar] [CrossRef]
- Kim, J.; Chang, S.A.; Park, S.W. First-in-Human Study for Evaluating the Accuracy of Smart Ring Based Cuffless Blood Pressure Measurement. J. Korean Med. Sci. 2024, 39, e18. [Google Scholar] [CrossRef]
- Chattu, V.K.; Manzar, M.D.; Kumary, S.; Burman, D.; Spence, D.W.; Pandi-Perumal, S.R. The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare 2018, 7, 1. [Google Scholar] [CrossRef]
- Altendahl, M.; Cotter, D.L.; Staffaroni, A.M.; Wolf, A.; Mumford, P.; Cobigo, Y.; Casaletto, K.; Elahi, F.; Ruoff, L.; Javed, S.; et al. REM sleep is associated with white matter integrity in cognitively healthy, older adults. PLoS ONE 2020, 15, e0235395. [Google Scholar] [CrossRef]
- Grandner, M.A.; Patel, N.P. From sleep duration to mortality: Implications of meta-analysis and future directions. J. Sleep Res. 2009, 18, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Leary, E.B.; Watson, K.T.; Ancoli-Israel, S.; Redline, S.; Yaffe, K.; Ravelo, L.A.; Peppard, P.E.; Zou, J.; Goodman, S.; Mignot, E.; et al. The Association between Rem Sleep and Risk of Mortality in Three Independent Cohorts. Sleep 2020, 43, A19–A20. [Google Scholar] [CrossRef]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Bathilde, J.B.; Then, Y.L.; Chameera, R.; Tay, F.S.; Zaidel, D.N.A. Continuous Heart Rate Monitoring System as an IoT edge device. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Republic of Korea, 12–14 March 2018; pp. 367–372. [Google Scholar]
- Chon, K.H.; McManus, D.D. Detection of atrial fibrillation using a smartwatch. Nat. Rev. Cardiol. 2018, 15, 657–658. [Google Scholar] [CrossRef]
- Quasim, M.T.; Khan, M.A.; Abdullah, M.; Meraj, M.; Singh, S.P.; Johri, P. Internet of Things for Smart Healthcare: A Hardware Perspective. In Proceedings of the 2019 First International Conference of Intelligent Computing and Engineering (ICOICE), Hadhramout, Yemen, 15–16 December 2019; pp. 1–5. [Google Scholar]
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A.; Yelamarthi, K. Prospect of Internet of Medical Things: A Review on Security Requirements and Solutions. Sensors 2022, 22, 5517. [Google Scholar] [CrossRef]
- Tang, V.; Choy, K.L.; Ho, G.T.S.; Lam, H.Y.; Tsang, Y.P. An IoMT-based geriatric care management system for achieving smart health in nursing homes. Ind. Manag. Data Syst. 2019, 119, 1819–1840. [Google Scholar] [CrossRef]
- Volpes, G.; Valenti, S.; Genova, G.; Bara, C.; Parisi, A.; Faes, L.; Busacca, A.; Pernice, R. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Biosensors 2024, 14, 205. [Google Scholar] [CrossRef]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef]
- Khan, M.F.; Ghazal, T.M.; Said, R.A.; Fatima, A.; Abbas, S.; Khan, M.A.; Issa, G.F.; Ahmad, M.; Khan, M.A.; Tawalbeh, L.a. An IoMT-Enabled Smart Healthcare Model to Monitor Elderly People Using Machine Learning Technique. Comput. Intell. Neurosci. 2021, 2021, 2487759. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Passos, J.; Lopes, S.I.; Clemente, F.M.; Moreira, P.M.; Rico-Gonzalez, M.; Bezerra, P.; Rodrigues, L.P. Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review. Sensors 2021, 21, 5418. [Google Scholar] [CrossRef] [PubMed]
- Prasitlumkum, N.; Cheungpasitporn, W.; Chokesuwattanaskul, A.; Thangjui, S.; Thongprayoon, C.; Bathini, T.; Vallabhajosyula, S.; Kanitsoraphan, C.; Leesutipornchai, T.; Chokesuwattanaskul, R. Diagnostic accuracy of smart gadgets/wearable devices in detecting atrial fibrillation: A systematic review and meta-analysis. Arch. Cardiovasc. Dis. 2021, 114, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital twins to personalize medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Sahal, R.; Alsamhi, S.H.; Brown, K.N. Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalised Healthcare Industry. Sensors 2022, 22, 5918. [Google Scholar] [CrossRef]
- Awad, A.; Trenfield, S.J.; Pollard, T.D.; Ong, J.J.; Elbadawi, M.; McCoubrey, L.E.; Goyanes, A.; Gaisford, S.; Basit, A.W. Connected healthcare: Improving patient care using digital health technologies. Adv. Drug Deliv. Rev. 2021, 178, 113958. [Google Scholar] [CrossRef]
- Shah, S.S.; Gvozdanovic, A.; Knight, M.; Gagnon, J. Mobile App–Based Remote Patient Monitoring in Acute Medical Conditions: Prospective Feasibility Study Exploring Digital Health Solutions on Clinical Workload During the COVID Crisis. JMIR Form. Res. 2021, 5, e23190. [Google Scholar] [CrossRef]
- Riedl, D.; Schüßler, G. The Influence of Doctor-Patient Communication on Health Outcomes: A Systematic Review. Z. Für Psychosom. Med. Und Psychother. 2017, 63, 131–150. [Google Scholar] [CrossRef]
- Prainsack, B. The value of healthcare data: To nudge, or not? Policy Stud. 2020, 41, 547–562. [Google Scholar] [CrossRef]
- Haile, C.; Kirk, A.; Cogan, N.; Janssen, X.; Gibson, A.-M.; MacDonald, B. Pilot Testing of a Nudge-Based Digital Intervention (Welbot) to Improve Sedentary Behaviour and Wellbeing in the Workplace. Int. J. Environ. Res. Public Health 2020, 17, 5763. [Google Scholar] [CrossRef]
- Varnfield, M.; Karunanithi, M.; Lee, C.-K.; Honeyman, E.; Arnold, D.; Ding, H.; Smith, C.; Walters, D.L. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: Results from a randomised controlled trial. Heart 2014, 100, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Jahankhani, H. Security Vulnerabilities in Existing Security Mechanisms for IoMT and Potential Solutions for Mitigating Cyber-Attacks. In Information Security Technologies for Controlling Pandemics; Advanced Sciences and Technologies for Security Applications; Springer: Cham, Switzerland, 2021; pp. 307–334. [Google Scholar]
- Thornton, A. Publication bias in meta-analysis its causes and consequences. J. Clin. Epidemiol. 2000, 53, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.F.A.; Åkerstedt, T.; Lindberg, E.; Gruber, G.; Fischer, H.; Theorell-Haglöw, J. Age affects sleep microstructure more than sleep macrostructure. J. Sleep Res. 2017, 26, 277–287. [Google Scholar] [CrossRef] [PubMed]
Authors | Year | Country | Study Population | Sample Size | Mean Age (Years) | Gender | Ring Type | Control Device | Time Recording | Type Estimate | Specific Outcome | Measure of Assessment | Financial Statement |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sleep Quality | |||||||||||||
Altini et al. [38] | 2021 | Multiple | Adolescents and healthy adults | 118 | 30.1 ± 16.4 | F:65; M:53 | OURA 2nd Gen | PSG | 440 nights | Bland–Altman Plots | TST (min) | 16.3 (12.9) | Conflicts of interest emerge |
Light sleep (min) | 58.1 (56.9) | ||||||||||||
Deep sleep (min) | 26.9 (29.9) | ||||||||||||
REM sleep (min) | 42.8 (40.5) | ||||||||||||
Ghorbani et al. [44] | 2022 | Singapore | Healthy adults | 58 | 37.1 ± 13.0 | F:27; M:32 | OURA 2nd Gen | PSG | 3 nights | Bland–Altman Plots | TST (min) | −18.1 (23.4) | Yes, both from public and private |
Sleep efficiency | No Data | ||||||||||||
Light sleep (min) | −46.9 (42.2) | ||||||||||||
Deep sleep (min) | 49.9 (47.4) | ||||||||||||
REM sleep (min) | −21.1 (37.6) | ||||||||||||
WASO (min) | 16.7 (25.3) | ||||||||||||
Chee et al. [42] | 2021 | Singapore | Adolescents | 52 | n/a | F:30; M:29 | OURA 2nd Gen | PSG | 15 nights | Bland–Altman Plots | TST (min) | −47.3 (24.6) | Not specified |
N1 + N2 (min) | −81.2 (32.2) | ||||||||||||
N3 (min) | 46.8 (36.3) | ||||||||||||
WASO (min) | 46.3 (22.0) (min) | ||||||||||||
REM (min) | −12.8 (28.9) (min) | ||||||||||||
De Zambotti et al. [43] | 2017 | USA | Adolescents and healthy adults | 41 | 17.2 ± 2.4 | F:13; M:28 | OURA 1st Gen | PSG | 1 night | Bland–Altman Plots | TST (min) | −1.3 (21.7) (min) | Yes, from public |
SOL (min) | −0.2 (7.0) (min) | ||||||||||||
WASO (min) | 1.5 (20.7) (min) | ||||||||||||
N1 + N2 (min) | −3.7 (66.2) (min) | ||||||||||||
N3 (min) | 19.6 (41.2) (min) | ||||||||||||
REM (min) | −17.2 (50.2) (min) | ||||||||||||
Asgari Mehrabadi et al. [39] | 2020 | Finland | Healthy adults | 45 | 33.1 ± 6.4 | F:23; M:22 | OURA 2nd Gen | Actigraphy | 6 nights | Bland–Altman Plots | TST (min) | −15.3 (39.7) (min) | Not specified |
Sleep Efficiency (%) | 1.3 (5.9) | ||||||||||||
WASO (min) | 17.4 (28.2) (min) | ||||||||||||
Stone et al. [53] | 2020 | USA | Healthy adults | 5 | F: 22, 23, and 27; M: 41 and 26 years | F:3; M:2 | OURA 2nd Gen | EEG | 98 nights | Bland–Altman Plots | TST (min) | 0.2 (0.0, 0.4) (min) | Independent third-party evaluation |
SE | 1.7 (0.2, 3.2) | ||||||||||||
TWT (min) | −0.2 (−0.3, 0.0) (min) | ||||||||||||
Miller et al. [50] | 2022 | Australia | Healthy adults | 53 | 25.4 ± 5.9 | F:26; M:27 | OURA 2nd Gen | PSG | 1 night | Bland–Altman Plots | TST (min) | 1.5 (40.9) (min) | Not specified |
N1 (min) | No data | ||||||||||||
N2 (min) | No data | ||||||||||||
Light sleep (min) | 19.8 (57.4) (min) | ||||||||||||
Deep sleep (min) | 2.4 (56.4) (min) | ||||||||||||
REM sleep (min) | −20.7 (35.3) (min) | ||||||||||||
Deep/REM (min) | No data | ||||||||||||
Wake (min) | −3.1 (36.1) (min) | ||||||||||||
HR (bpms) | 0.1 (4.5) | ||||||||||||
HRV (RMSSD, ms) | −10.2 (39.4) | ||||||||||||
Lee et al. [48] | 2023 | South Korea | Adults with sleep disorders | 53 | 43.6 ± 14.1 | 36 F; 39 M | OURA 3rd Gen | PSG | 350 h | Bland–Altman Plots; sensitivity, specificity | Light sleep (sensitivity) | 0.51 | Yes, from public |
Light sleep (specificity) | 0.76 | ||||||||||||
Deep sleep (sensitivity) | 0.78 | ||||||||||||
Deep sleep (specificity) | 0.80 | ||||||||||||
REM (sensitivity) | 0.71 | ||||||||||||
REM (specificity) | 0.87 | ||||||||||||
REM (Bland–Altman Bias) | −9.5 | ||||||||||||
Ong et al. [51] | 2023 | Singapore | Healthy adults | 60 | 38.5 ± 15.1 | 34 F; 26 M | OURA 3rd Gen | PSG | 1 night | Bland–Altman Plots | TST | 0.9 (34.6) | Yes, both from public and private |
WASO | −11.2 (30.6) | ||||||||||||
Light Sleep | −14.7 (38.4) | ||||||||||||
Deep sleep | 7.6 (30.5) | ||||||||||||
REM | 8.1 (24.2) | ||||||||||||
SE (%) | 0.2 (8.2) | ||||||||||||
Kainec et al. [45] | 2024 | USA | Healthy adults | 53 | 22.5 ± 3.5 | 31 F; 22 M | OURA 2nd Gen | PSG | 1 night | Bland–Altman Plots | TST | −13.9 (41.1) | Yes, from public |
WASO | 39.6 (0.4 x ref) | ||||||||||||
Light Sleep | −49.5 (59.0) | ||||||||||||
Deep sleep | 94.9 (0.6 x ref) | ||||||||||||
REM | 5.8 (37.7) | ||||||||||||
Svensson et al. [55] | 2024 | Japan | Healthy adults | 96 | 41.9 ± 13.8 | n/a | OURA 3rd Gen | PSG | ≤3 nights | Bland–Altman Plots | SE (%) [Dominant Hand] | 1.5 (4.2) | Yes, from private |
TST [Dominant Hand] | 3.6 (25.0) | ||||||||||||
Light Sleep [Dominant Hand] | −4.2 (23.2) | ||||||||||||
Deep sleep [Dominant Hand] | 2.2 (33.4) | ||||||||||||
REM [Dominant Hand] | 5.6 (17.6) | ||||||||||||
SE (%) [Non-Dominant Hand] | 1.1 (4.8) | ||||||||||||
TST [Non-Dominant Hand] | 2.1 (26.2) | ||||||||||||
Light Sleep [Non-Dominant Hand] | −5.0 (40.5) | ||||||||||||
Deep sleep [Non-Dominant Hand] | 3.1 (33.8) | ||||||||||||
REM [Non-Dominant Hand] | 4.1 (17.8) | ||||||||||||
Cardiovascular outcomes | |||||||||||||
Miller et al. [50] | 2022 | Australia | Healthy adults | 53 | 25.4 ± 5.9 | F:26; M:27 | OURA 2nd Gen | PSG | 1 night | Bland–Altman Plots [mmHg] | HR (bpms); HRV (RMSSD, ms) | 0.1 (4.5) −10.2 (39.4) | Not specified |
Cao et al. [41] | 2022 | Finland | Healthy adults | 35 | 32.3 ± 6.4 | F:19; M:16 | OURA 3rd Gen | ECG | 1 night | Bland–Altman Plots | HR (bpms) | −0.4 (−0.9, 0.0) | Yes, from public |
Schukraft et al. [52] | 2022 | Switzerland | Adults requiring invasive BP monitoring | 25 | 68.9 ± 6.4 | F:10; M:15 | Senbiosys device (SBF2003) | Invasive BP measurements | 9 min | Bland–Altman Plots [mmHg] | SBP | 2.3 ± 11.3 | Yes, from public |
RMSE [mmHg] | 7.3 | ||||||||||||
Bland–Altman Plots [mmHg] RMSE [mmHg] | DBP | BAP: 0.5 ± 6.9 RMSE: 3.6 | |||||||||||
RMSE [mmHg] | MBP | RMSE: 3.6 | |||||||||||
Kinnunen et al. [46] | 2020 | Finland | Adults | 60 | 31.6 ± 11.8 | F:40; M:20 | OURA 1st Gen | ECG | 5 min segment; 1 night | Bland–Altman Plots | HR (bpms) | −0.6 [−1.4, 0.1] | Yes, from private |
Stone et al. [54] | 2021 | USA | Healthy adults | 5 | 20.33 ± 2.08 F: 19.50 ± 0.71 | F:2; M:3 | OURA 2nd Gen | ECG (5 lead) | 3 or 5 min | Bland–Altman Plots | HR (bpms) | −2.3 (−5.6, 0.9) | Yes, from private |
Kwon et al. [47] | 2020 | Korea | Adults with persistent AF who underwent cardioversion recruited prospectively | 100 | 63.8 ± 8.5 | F:19; M:81 | CART (Sky Labs Inc) + Deep Learning Algorithm | ECG (1 lead) | 15 min | Accuracy, Sensitivity, Specificity, Positive predictive value, Negative predictive value, AUCa (95% CI) | AF | Accuracy: 96.9 Sensitivity: 98.9 Specificity: 94.3 Positive predictive value: 95.6 Negative predictive value: 98.7 AUCa (95% CI): 0.99 (0.99–0.99) | Yes, from private |
Boukhayma et al. [40] | 2021 | Switzerland | Healthy adults | 7 | 34.3 ± 5.3 | M:7 | Prototype | ECG (4 leads) | 37.10 h of sleep and 35.11 h of wake recording | MAE; ME; RMSE; MAPE | beat-to-beat detection accuracy; | (MAE) of 8.10 ms; (ME) of 0.24 ms; (RMSE) of 13.97 ms; (MAPE) of 0.80% | Not specified |
Kim et al. [56] | 2024 | Korea | Healthy adults | 89 | 40.1 ± 12.0 | M: 42; F: 47 | CART (Sky Labs Inc) | BP measurement by auscultation | 526 SBP samples; 513 DBP samples | Bland–Altman | SBP | 0.2 (5.9) | Yes, from private |
DBP | −0.1 (4.7) | ||||||||||||
SaO2 outcomes | |||||||||||||
Mastrototaro et al. [49] | 2024 | USA | Healthy adults | 11 | 26.9 ± 4.1 | F: 5; M: 6 | Prototype | Masimo Radical-7 pulse oximeter | n/a; 258 samples | RMSE | SaO2 | 2.1% | Yes, from private |
Mean Bias (min) | SD | LoAs | CI_Lm | CI_Um | |
---|---|---|---|---|---|
TST | −21.3 | 5.4 | −69.9, 27.4 | −45,916.4 | 45,873.8 |
REM | −18.2 | 5.8 | −33.3, −3.1 | −281.5 | 245.1 |
Mean Bias (min) | SD | LoAs | CI_Lm | CI_Um | |
---|---|---|---|---|---|
Nocturnal HR | −0.4 | 1.1 | −2.7, 1.8 | −6.0 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.; Bianconi, A.; Sicari, G.; Conni, A.; Lenzi, J.; Tomaiuolo, G.; Zito, F.; Golinelli, D.; Sanmarchi, F. The Use of Smart Rings in Health Monitoring—A Meta-Analysis. Appl. Sci. 2024, 14, 10778. https://doi.org/10.3390/app142310778
Fiore M, Bianconi A, Sicari G, Conni A, Lenzi J, Tomaiuolo G, Zito F, Golinelli D, Sanmarchi F. The Use of Smart Rings in Health Monitoring—A Meta-Analysis. Applied Sciences. 2024; 14(23):10778. https://doi.org/10.3390/app142310778
Chicago/Turabian StyleFiore, Matteo, Alessandro Bianconi, Gaia Sicari, Alice Conni, Jacopo Lenzi, Giulia Tomaiuolo, Flavia Zito, Davide Golinelli, and Francesco Sanmarchi. 2024. "The Use of Smart Rings in Health Monitoring—A Meta-Analysis" Applied Sciences 14, no. 23: 10778. https://doi.org/10.3390/app142310778
APA StyleFiore, M., Bianconi, A., Sicari, G., Conni, A., Lenzi, J., Tomaiuolo, G., Zito, F., Golinelli, D., & Sanmarchi, F. (2024). The Use of Smart Rings in Health Monitoring—A Meta-Analysis. Applied Sciences, 14(23), 10778. https://doi.org/10.3390/app142310778