The Effect Characterization of Lens on LNAPL Migration Based on High-Density Resistivity Imaging Technique
Abstract
:1. Introduction
2. Experimental Principles
2.1. Experimental Setup and Materials
2.2. Experimental Procedure and Principle
3. Experimental Results
3.1. Characterization of LNAPL Migration Rates
3.1.1. The No Lens-Shaped Aquifer Test Group
3.1.2. The Low-Permeability Lens Test Group
3.1.3. The High-Permeability Lens Test Group
3.2. Relation Between Migration Distance and Lens
3.3. Characteristics of Resistivity Change
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavelan, A.; Faure, P.; Lorgeoux, C.; Colombano, S.; Deparis, J.; Davarzani, D.; Enjelvin, N.; Oltean, C.; Tinet, A.-J.; Domptail, F.; et al. An experimental multi-method approach to better characterize the LNAPL fate in soil under fluctuating groundwater levels. J. Contam. Hydrol. 2024, 262, 104319. [Google Scholar] [CrossRef] [PubMed]
- Nambi, M.I.; Powers, E.S. NAPL dissolution in heterogeneous systems: An experimental investigation in a simple heterogeneous system. J. Contam. Hydrol. 2000, 44, 161–184. [Google Scholar] [CrossRef]
- Zheng, D.F.; Zhao, Y.S.; Wang, B.D. Study on the migration characteristics and simulation prediction of light non-aqueous phase liquids in the subsurface environment. Adv. Water Sci. 2002, 3, 321–325. [Google Scholar]
- Pan, Y.Y. Research on the Control Factors and Monitoring Techniques of NAPLs Underground Migration. Doctoral Dissertation, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Ren, X. Study on the Migration Law of LNAPLs in the Vadose Zone Layered Heterogeneous Interface. Master’s Dissertation, Jilin University, Changchun, China, 2019. [Google Scholar]
- Luo, L.Y. Research on the Lens Shape of LNAPL Formed in the Vadose Zone and the Influence of Water Level Fluctuations on It. Master’s Dissertation, Jilin University, Changchun, China, 2017. [Google Scholar]
- Li, Y.T. Study on the Migration Mechanism and Simulation of LNAPLs in the Vadose Zone. Doctoral Dissertation, Chang’an University, Xi’an, China, 2010. [Google Scholar]
- Zhu, Z.H.; Gao, Z.J.; Zhang, X.H.; Chen, Y.; Han, K. Vertical migration of light non-aqueous phase fluid (diesel) in porous media. Chin. J. Environ. Eng. 2015, 9, 1842–1848. [Google Scholar]
- Wu, X.F.; Tang, J.; Fujima, Y. Experimental study on the saturation of oil-water two-phase flow in the groundwater saturated zone. J. Hydraul. Eng. 2000, 10, 12–15. [Google Scholar]
- Zuo, R.; Xue, Z.; Zhai, Y.; Yang, J.; Li, J.; Han, K.; Gao, X.; Wang, J.; Teng, Y. Construction, application and validation of a new algorithm for determining light nonaqueous-phase liquid fluxes in unsaturated zones. J. Environ. Manag. 2022, 321, 115934. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhou, Q.Y.; Xu, S. Experimental study on the migration and distribution characteristics of LNAPL under heterogeneous conditions in the unsaturated zone. Hydrogeol. Eng. Geol. 2006, 5, 52–57. [Google Scholar]
- Abdul, A.S. Migration of petroleum products through sandy hydrogeologic systems. Groundw. Monit. Remediat. 1988, 8, 73. [Google Scholar] [CrossRef]
- Pantazidou, M.; Sitar, N. Emplacement of nonaqueous liquids in the vadose zone. Water Resour. Res. 1993, 29, 705–722. [Google Scholar] [CrossRef]
- Wipfler, E.L.; Ness, M.; Breedveld, G.D.; Marsman, A.; Van Der Zee, S.E. Infiltration and redistribution of LNAPL into unsaturated layered porous media. J. Contam. Hydrol. 2004, 71, 47–66. [Google Scholar] [CrossRef]
- Govindarajan, D.; Banerjee, A.; Chandrakumar, N.; Raghunathan, R. Magnetic resonance imaging of enhanced mobility of light non-aqueous phase liquid (LNAPL) during drying of water-wet porous media. J. Contam. Hydrol. 2020, 234, 103683. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, H.E.; Isler, E.; Polese, L.; Baessa, M.P.; Chang, H.K. LNAPL saturation derived from laser-induced fluorescence method. Sci. Total Environ. 2019, 683, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.F.; Nie, Y.X.; Hu, L.M.; Zhou, Q.Y.; Wen, Q.B. Experimental study on water migration model based on high-density electrical resistivity method. Chin. J. Geotech. Eng. 2016, 38, 761–768. [Google Scholar]
- Iravani, M.A.; Deparis, J.; Davarzani, H.; Colombano, S.; Guérin, R.; Maineult, A. Complex electrical resistivity and dielectric permittivity responses to dense non-aqueous phase liquids’ imbibition and drainage in porous media: A laboratory study. J. Environ. Eng. Geophys. 2020, 25, 557–567. [Google Scholar] [CrossRef]
- Cardiff, M.; Zhou, Y.Q.; Barrash, W.; Kitanidis, P.K. Aquifer imaging with oscillatory hydraulic tomography: Application at the field scale. Groundwater 2020, 58, 710–722. [Google Scholar] [CrossRef]
- Xia, T.; Dong, Y.; Mao, D.; Meng, J. Delineation of LNAPL contaminant plumes at a former perfumery plant using electrical resistivity tomography. Hydrogeol. J. 2021, 29, 1189–1201. [Google Scholar] [CrossRef]
- Delaney, J.A.; Peapples, R.P.; Arcone, A.S. Electrical resistivity of frozen and petroleum-contaminated fine-grained soil. Cold Reg. Sci. Technol. 2001, 32, 107–119. [Google Scholar] [CrossRef]
- Philippe, S.; Antonio, M.; Bernd, K. Diesel transport monitoring in simulated unconfined aquifers using miniature resistivity arrays. Environ. Earth Sci. 2010, 61, 107–114. [Google Scholar]
- Pan, Y.; Jia, Y.; Wang, Y.; Xia, X.; Guo, L. Study on diesel vertical migration characteristics and mechanism in water-bearing sand stratum using an automated resistivity monitoring system. Environ. Sci. Pollut. Res. Int. 2018, 25, 3802–3812. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhang, S. Monitoring of LNAPL contamination process in heterogeneous porous media using high-density electrical resistivity imaging method. Prog. Geophys. 2014, 29, 2401–2406. [Google Scholar]
- Halihan, T.; Sefa, V.; Sale, T.; Lyverse, M. Mechanism for detecting NAPL using electrical resistivity imaging. J. Contam. Hydrol. 2017, 205, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Dong, Y.; Xia, T.; Ma, X.; Gao, C.; Mao, D. Detailed LNAPL plume mapping using electrical resistivity tomography inside an industrial building. Acta Geophys. 2022, 70, 1651–1663. [Google Scholar] [CrossRef]
- Orlando, L.; Renzi, B. Electrical permittivity and resistivity time lapses of multiphase DNAPLs in a lab test. Water Resour. Res. 2015, 51, 377–389. [Google Scholar] [CrossRef]
- Ciampi, P.; Esposito, C.; Cassiani, G.; Deidda, G.P.; Flores-Orozco, A.; Rizzetto, P.; Chiappa, A.; Bernabei, M.; Gardon, A.; Papini, M.P. Contamination presence and dynamics at a polluted site: Spatial analysis of integrated data and joint conceptual modeling approach. J. Contam. Hydrol. 2022, 248, 104026. [Google Scholar] [CrossRef]
- Mineo, S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. Sci. Total Environ. 2023, 874, 162394. [Google Scholar] [CrossRef]
- Power, C.; Gerhard, J.I.; Tsourlos, P.; Soupios, P.; Simyrdanis, K.; Karaoulis, M. Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays. J. Appl. Geophys. 2015, 112, 1–13. [Google Scholar] [CrossRef]
- Boyd, J.; Blanchy, G.; Saneiyan, S.; McLachlan, P.; Binley, A. 3D geoelectrical problems with ResiPy, an open-source graphical user interface for geoelectrical data processing. Fast Times 2019, 24, 85–92. [Google Scholar]
- Ha, J.; Seagren, A.E.; Song, X. Oxygen transport across the capillary fringe in LNAPL pool-source zones. J. Environ. Eng. 2014, 140, 040140. [Google Scholar] [CrossRef]
- Praseeja, A.V.; Sajikumar, N. Numerical simulation on LNAPL migration in vadose zone and its prevention using natural fibre. Exp. Comput. Multiph. Flow 2023, 5, 53–66. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Soga, K.; Wiart, P. Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow laboratory experiments. J. Contam. Hydrol. 2000, 46, 265–293. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Q.; Yu, Y.; Tong, Y.; Yang, J. Three-dimensional migration and resistivity characteristics of crude oil in heterogeneous soil layers. Environ. Pollut. 2020, 268, 115309. [Google Scholar] [CrossRef] [PubMed]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 6, 3837–3866. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, P.; Cassiani, G.; Deidda, G.P.; Esposito, C.; Rizzetto, P.; Pizzi, A.; Petrangeli Papini, M. Understanding the dynamics of enhanced light non-aqueous phase liquids (LNAPL) remediation at a polluted site: Insights from hydrogeophysical findings and chemical evidence. Sci. Total Environ. 2024, 932, 172934. [Google Scholar] [CrossRef] [PubMed]
- Endres, A.L.; Greenhouse, J.P. Detection and Monitoring of Chlorinated Solvent Contamination by Thermal Neutron Logging. Ground Water 2010, 34, 283–292. [Google Scholar] [CrossRef]
- Grumman, D.L.; Daniels, J.J. Experiments on the Detection of Organic Contaminants in the Vadose Zone. J. Environ. Eng. Geophys. 2008, 1, 31–38. [Google Scholar] [CrossRef]
- Cassiani, G.; Binley, A.; Kemna, A.; Wehrer, M.; Orozco, A.F.; Deiana, R.; Boaga, J.; Rossi, M.; Dietrich, P.; Werban, U.; et al. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: Links between contamination and geophysical signals. Environ. Sci. Pollut. Res. Int. 2014, 15, 8914–8931. [Google Scholar] [CrossRef]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Shahul Hamid, F. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
Sample | Unevenness Coefficient | Curvature Factor | Average Particle Size/mm | Percentage of Particle Size/% | ||||
---|---|---|---|---|---|---|---|---|
2~0.5 mm | 0.5~0.25 mm | 0.25~0.075 mm | 0.075~0.005 mm | <0.005 mm | ||||
Primary Medium | 1.89 | 0.87 | 0.131 | 0 | 0 | 94.4 | 3 | 2.6 |
Weak lens group | 10.5 | 0.86 | 0.014 | 0 | 0 | 4.2 | 68.3 | 27.5 |
Intense lens group | 5.37 | 1.16 | 0.610 | 58.4 | 24.6 | 15.3 | 1.2 | 0.5 |
Diesel Type | Densities (g/mL) | Dynamic Viscosity (cst) | Surface Tension (dyne/cm) | Combustion Point (°C) | Boiling Point (°C) |
---|---|---|---|---|---|
0# | 0.84 | 2.54 | 27.8 | 220 | 180–370 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Cheng, J.; Jia, M.; Zhang, H.; Li, H.; Zhang, H. The Effect Characterization of Lens on LNAPL Migration Based on High-Density Resistivity Imaging Technique. Appl. Sci. 2024, 14, 10389. https://doi.org/10.3390/app142210389
Zhao G, Cheng J, Jia M, Zhang H, Li H, Zhang H. The Effect Characterization of Lens on LNAPL Migration Based on High-Density Resistivity Imaging Technique. Applied Sciences. 2024; 14(22):10389. https://doi.org/10.3390/app142210389
Chicago/Turabian StyleZhao, Guizhang, Jiale Cheng, Menghan Jia, Hongli Zhang, Hongliang Li, and Hepeng Zhang. 2024. "The Effect Characterization of Lens on LNAPL Migration Based on High-Density Resistivity Imaging Technique" Applied Sciences 14, no. 22: 10389. https://doi.org/10.3390/app142210389
APA StyleZhao, G., Cheng, J., Jia, M., Zhang, H., Li, H., & Zhang, H. (2024). The Effect Characterization of Lens on LNAPL Migration Based on High-Density Resistivity Imaging Technique. Applied Sciences, 14(22), 10389. https://doi.org/10.3390/app142210389