External Validation of Accelerometry-Based Mechanical Loading Prediction Equations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Processing
2.4. Statistical Analyses
3. Results
3.1. Accuracy of pGRF and pLR Predictions for Walking and Running Using the Veras et al., 2022 [20] Equations
3.2. Accuracy of pGRF Predictions for Walking and Running Using the Neugebauer et al., 2014 [17] Equation
3.3. Accuracy of pGRF and pLR Predictions for Jumping Using the Veras et al., 2023 [21] Equations
3.4. Bland–Altman Plot Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooke-Wavell, K.; A Skelton, D.; Barker, K.L.; Clark, E.M.; De Biase, S.; Arnold, S.; Paskins, Z.; Robinson, K.R.; Lewis, R.M.; Tobias, J.H.; et al. Strong, steady and straight: UK consensus statement on physical activity and exercise for osteoporosis. Br. J. Sports Med. 2022, 56, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Elliott-Sale, K.J.; Sale, C. Exercise and bone health across the lifespan. Biogerontology 2017, 18, 931–946. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.R.; Daly, R.M.; Singh, M.A.F.; Taaffe, D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport. 2017, 20, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.; Moreira-Gonçalves, D.; Coriolano, H.-J.A.; Duarte, J.A. Bone quality: The determinants of bone strength and fragility. Sports Med. 2014, 44, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.T.; Beck, B.R. Exercise, Osteoporosis, and Bone Geometry. Sports 2017, 5, 29. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and T. Osteoporosis Prevention, Diagnosis, and Therapy. J. Am. Med. Assoc. 2001, 285, 785–795. [CrossRef]
- Turner, C.H.; Robling, A.G. Mechanisms by which exercise improves bone strength. J. Bone Miner. Metab. 2005, 23, 16–22. [Google Scholar] [CrossRef]
- Robling, A.G.; Turner, C.H. Mechanical signaling for bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 319–338. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, X.; Zhang, L.; Wu, J.; Guo, J.; Zou, D.; Chen, B.; Sun, Z.; Shen, C.; Zou, J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog. Biophys. Mol. Biol. 2016, 122, 122–130. [Google Scholar] [CrossRef]
- Ren, S.; Chen, Z.; Qin, X.; Zhao, X.; Yang, T.D.; Zhu, W. Measurement and Evaluation of Bone Loading in Physical Activity: A Systematic Review. Meas. Phys. Educ. Exerc. Sci. 2020, 25, 149–162. [Google Scholar] [CrossRef]
- Medved, V. Measurement of Human Locomotion; CRC Press: London, UK, 2000. [Google Scholar]
- Weeks, B.K.; Beck, B.R. The BPAQ: A bone-specific physical activity assessment instrument. Osteoporos. Int. 2008, 19, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.N.; Lee, V.R.; Blew, R.M.; Lohman, T.G.; Going, S.B. Quantifying bone-relevant activity and its relation to bone strength in girls. Med. Sci. Sports Exerc. 2011, 43, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; So, W.-Y.; Kim, J.; Sung, D.J. Relationship between bone-specific physical activity scores and measures for body composition and bone mineral density in healthy young college women. PLoS ONE 2016, 11, e0162127. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Baker, B.S.; Sharma-Ghimire, P.; Bemben, D.A.; Bemben, M.G. Association between bone-specific physical activity scores and pQCT-derived measures of bone strength and geometry in healthy young and middle-aged premenopausal women. Arch. Osteoporos. 2018, 13, 83. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Hawkins, D.A.; Beckett, L. Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor. PLoS ONE 2012, 7, e48182. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Collins, K.H.; Hawkins, D.A. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations. PLoS ONE 2014, 9, e99023. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Lafiandra, M. Predicting ground reaction force from a hip-borne accelerometer during load carriage. Med. Sci. Sports Exerc. 2018, 50, 2369–2374. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.P.; Machado, L.; Oliveira, J.; Fonseca, H. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporos. Int. 2020, 31, 1239–1250. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Resende-Coelho, A.; Moutinho-Ribeiro, E.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.P.; Machado, L.; et al. Mechanical loading prediction through accelerometry data during walking and running. Eur. J. Sport Sci. 2022, 23, 1518–1527. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.P.; Machado, L.; Oliveira, J.; Fonseca, H. Using Raw Accelerometer Data to Predict High-Impact Mechanical Loading. Sensors 2023, 23, 2246. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J. Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med. Sci. Sports Exerc. 2005, 37 (Suppl. S11), S501–S511. [Google Scholar] [CrossRef] [PubMed]
- Toda, H.; Nagano, A.; Luo, Z. Age and gender differences in the control of vertical ground reaction force by the hip, knee and ankle joints. J. Phys. Ther. Sci. 2015, 27, 1833–1838. [Google Scholar] [CrossRef]
- Patoz, A.; Menéndez, A.F.; Malatesta, D. The effect of severe obesity on three-dimensional ground reaction force signals during walking. Clin. Biomech. 2023, 107, 106042. [Google Scholar] [CrossRef]
- Staudenmayer, J.; Zhu, W.; Catellier, D.J. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med. Sci. Sports Exerc. 2012, 44 (Suppl. S1), S61–S67. [Google Scholar] [CrossRef]
- Zhang, Y.; Weijer, R.H.; van Schooten, K.S.; Bruijn, S.M.; Pijnappels, M. External Validation and Further Exploration of Fall Prediction Models Based on Questionnaires and Daily-Life Trunk Accelerometry. J. Am. Med. Dir. Assoc. 2024, 25, 105107. [Google Scholar] [CrossRef]
- Lyden, K.; Kozey, S.L.; Staudenmeyer, J.W.; Freedson, P.S. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur. J. Appl. Physiol. 2011, 111, 187. [Google Scholar] [CrossRef]
- Chastin, S.; Mandrichenko, O.; Helbostadt, J.; Skelton, D. Associations between objectively-measured sedentary behaviour and physical activity with bone mineral density in adults and older adults, the NHANES study. Bone 2014, 64, 254–262. [Google Scholar] [CrossRef]
- Stiles, V.H.; Metcalf, B.S.; Knapp, K.M.; Rowlands, A. A small amount of precisely measured high-intensity habitual physical activity predicts bone heath in pre- and post-menopausal women in UK Biobank. Int. J. Epidemiol. 2017, 46, 1847–1856. [Google Scholar] [CrossRef]
- Fortune, E.; Morrow, M.M.B.; Kaufman, K.R. Assessment of gait kinetics using tri-axial accelerometers. J. Appl. Biomech. 2014, 30, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Chiasson, D.P.; Hu, H.; Shull, P.B. Influence of IMU position and orientation placement errors on ground reaction force estimation. J. Biomech. 2019, 97, 109416. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Brantley, J.S.; Kim, T.; Ridenour, S.A.; Lach, J. Characterising and minimising sources of error in inertial body sensor networks. Int. J. Auton. Adapt. Commun. Syst. 2013, 6, 253–271. [Google Scholar] [CrossRef]
- Jiang, X.; Bíró, I.; Sárosi, J.; Fang, Y.; Gu, Y. Comparison of ground reaction forces as running speed increases between male and female runners. Front. Bioeng. Biotechnol. 2024, 12, 1378284. [Google Scholar] [CrossRef]
- Park, J.; Kim, C. Ground-reaction-force-based gait analysis and its application to gait disorder assessment: New indices for quantifying walking behavior. Sensors 2022, 22, 7558. [Google Scholar] [CrossRef]
- Sara, L.K.; Outerleys, J.; Johnson, C.D. The effect of sensor placement on measured distal tibial accelerations during running. J. Appl. Biomech. 2023, 39, 199–203. [Google Scholar] [CrossRef]
Veras et al. (2022) [20] | Neugebauer et al. (2014) [17] | Veras et al. (2023) [21] | |
---|---|---|---|
(52 females, 79 males) | (20 females, 19 males) | (51 females, 27 males) | |
Age (years) | 32.0 ± 11.2 | 21.2 ± 1.3 | 35.6 ± 11.6 |
Height (m) | 1.65 ± 0.09 | 1.73 ± 0.12 | 1.63 ± 0.09 |
Mass (kg) | 76.9 ± 19.6 | 67.6 ± 11.5 | 82.4 ± 20.6 |
BMI (kg·m−2) | 28.5 ± 81 | 22.5 ± 2.3 | 31.3 ± 8.7 |
Vector | Activity | Accelerometer Placement | MAE | MAPE | RMSE |
---|---|---|---|---|---|
pGRF prediction | |||||
Resultant | Walking | Ankle | 606.7 | 80.0% | 617.3 |
Lower back | 598.7 | 78.9% | 609.9 | ||
Hip | 577.4 | 75.9% | 587.7 | ||
Running | Ankle | 247.5 | 14.3% | 314.8 | |
Lower back | 218.0 | 12.9% | 271.0 | ||
Hip | 189.9 | 11.6% | 240.9 | ||
Vertical | Walking | Ankle | 621.7 | 83.3% | 632.5 |
Lower back | 596.8 | 79.6% | 607.3 | ||
Hip | 557.0 | 74.1% | 567.2 | ||
Running | Ankle | 243.5 | 14.4% | 302.0 | |
Lower back | 239.8 | 14.1% | 295.8 | ||
Hip | 199.7 | 12.1% | 248.5 | ||
pLR prediction | |||||
Resultant | Walking | Ankle | 8847.6 | 116.0% | 9706.2 |
Lower back | 9460.4 | 134.0% | 10,372.9 | ||
Hip | 8713.0 | 114.8% | 9653.9 | ||
Running | Ankle | 16,638.6 | 40.6% | 20,459.1 | |
Lower back | 17,539.7 | 43.1% | 21,288.0 | ||
Hip | 22,334.3 | 56.6% | 26,363.9 | ||
Vertical | Walking | Ankle | 8042.0 | 106.5% | 8826.3 |
Lower back | 10,328.2 | 147.6% | 11,247.3 | ||
Hip | 8512.6 | 113.6% | 9334.4 | ||
Running | Ankle | 15,729.8 | 38.9% | 19,313.6 | |
Lower back | 16,609.6 | 40.7% | 20,319.9 | ||
Hip | 14,198.7 | 35.2% | 17,408.8 |
Vector | Activity | Accelerometer Placement | MAE | MAPE | RMSE |
---|---|---|---|---|---|
pGRF Prediction | |||||
Vertical | Walking | Hip | 75.0 | 9.7% | 104.9 |
Running | Hip | 168.7 | 11.1% | 213.5 |
Vector | Accelerometer Placement | MAE | MAPE | RMSE |
---|---|---|---|---|
pGRF prediction | ||||
Resultant | Ankle | 646.2 | 27.2% | 786.2 |
Lower back | 405.3 | 16.7% | 518.9 | |
Hip | 380.6 | 15.2% | 499.2 | |
Vertical | Ankle | 633.6 | 28.1% | 762.9 |
Lower back | 433.1 | 18.8% | 542.0 | |
Hip | 378.6 | 15.5% | 500.8 | |
pLR prediction | ||||
Resultant | Ankle | 42,578.0 | 260.3% | 46,675.9 |
Lower back | 30,446.0 | 171.4% | 33,924.7 | |
Hip | 25,233.5 | 149.0% | 28,840.3 | |
Vertical | Ankle | 39,082.2 | 257.2% | 43,130.8 |
Lower back | 36,628.7 | 213.6% | 39,823.7 | |
Hip | 28,880.9 | 161.5% | 32,443.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veras, L.; Oliveira, D.; Diniz-Sousa, F.; Boppre, G.; Resende-Coelho, A.; Oliveira, J.; Fonseca, H. External Validation of Accelerometry-Based Mechanical Loading Prediction Equations. Appl. Sci. 2024, 14, 10292. https://doi.org/10.3390/app142210292
Veras L, Oliveira D, Diniz-Sousa F, Boppre G, Resende-Coelho A, Oliveira J, Fonseca H. External Validation of Accelerometry-Based Mechanical Loading Prediction Equations. Applied Sciences. 2024; 14(22):10292. https://doi.org/10.3390/app142210292
Chicago/Turabian StyleVeras, Lucas, Daniela Oliveira, Florêncio Diniz-Sousa, Giorjines Boppre, Ana Resende-Coelho, José Oliveira, and Hélder Fonseca. 2024. "External Validation of Accelerometry-Based Mechanical Loading Prediction Equations" Applied Sciences 14, no. 22: 10292. https://doi.org/10.3390/app142210292
APA StyleVeras, L., Oliveira, D., Diniz-Sousa, F., Boppre, G., Resende-Coelho, A., Oliveira, J., & Fonseca, H. (2024). External Validation of Accelerometry-Based Mechanical Loading Prediction Equations. Applied Sciences, 14(22), 10292. https://doi.org/10.3390/app142210292