Enhancing the Antioxidant Capacity and Oxidative Stability of Cooked Sausages Through Portulaca oleracea (Purslane) Supplementation: A Natural Alternative to Synthetic Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Fatty Acid Composition
2.3. Determination of Color Characteristics
2.4. Analysis of Molecular Weight Distribution of Protein Fractions in Samples Carried Out Using One-Dimensional Electrophoresis
2.5. Determination of Ferric-Reducing Antioxidant Power (FRAP) and Antioxidant Activity Using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.6. Statistical Analyses
3. Results and Discussion
3.1. Analysis of Fatty Acid Composition Results
3.2. Analysis of Color Characteristic Results
3.3. Analysis of Molecular Weight Distribution of Protein Fractions in Samples Using One-Dimensional Electrophoresis
3.4. Evaluation of Antioxidant Capacity: Ferric-Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs) Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 30 September 2024).
- Jain, K.S.; Kathiravan, M.K.; Somani, R.S.; Shishoo, C.J. The biology and chemistry of hyperlipidemia. Bioorg. Med. Chem. 2007, 15, 4674–4699. [Google Scholar] [CrossRef] [PubMed]
- Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; Ferrari, A.J. The state of US health, 1990–2016: Burden of diseases, injuries, and risk factors among US states. JAMA 2018, 319, 1444–1472. [Google Scholar] [CrossRef]
- Poli, A.; Visioli, F.; Bianchi, A.; Romeo, F.; Cimaglia, P.; Mambelli, G.; Bernini, W. Nutraceuticals and functional foods for the control of plasma cholesterol levels. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.D.; Panza, G.; Zaleski, A.; Taylor, B. Statin-associated side effects. J. Am. Coll. Cardiol. 2016, 67, 2395–2410. [Google Scholar] [CrossRef]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and cardiovascular disease: Evidence explained and mechanisms explored. Clin. Sci. 2020, 134, 277–300. [Google Scholar]
- Simopoulos, A.P. Omega-3 fatty acids and cardiovascular disease: The epidemiological evidence. Environ. Health Prev. Med. 2004, 9, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.B.; Song, X.; Huang, H.; Sacks, F.M.; Rimm, E.B.; Wang, M.; Siscovick, D.S. Plasma phospholipid long-chain ω-3 fatty acids and total and cause-specific mortality in older adults: A cohort study. Ann. Intern. Med. 2013, 158, 515–525. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Arampatzis, D.A.; Tsiropoulos, N.G.; Petrović, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT 2020, 123, 109099. [Google Scholar] [CrossRef]
- Liu, L.; Howe, P.; Zhou, Y.-F.; Hocart, C.; Zhang, R. Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. J. Chromatogr. A 2000, 893, 207–213. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Murakami, K.; Adachi, T. Variation in betalain content and factors affecting the biosynthesis in Portulaca sp. “Jewel” cell cultures. Plant Biotechnol. 2002, 19, 369–376. [Google Scholar] [CrossRef]
- Gu, Y.; Leng, A.; Zhang, W.; Ying, X.; Stien, D. A novel alkaloid from Portulaca oleracea L. and its anti-inflammatory activity. Nat. Prod. Res. 2020, 36, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Zidan, Y.; Bouderbala, S.; Djellouli, F.; Lacaille-Dubois, M.A.; Bouchenak, M. Lyophilized aqueous extract of Portulaca oleracea improves serum high-density lipoproteins and lecithin levels in cholesterol-enriched diet-fed rats. Phytomedicine 2014, 21, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P.; Norman, H.A.; Gillaspy, G.E.; Duke, J.A. Common purslane: A source of omega-3 fatty acids and antioxidants. J. Am. Coll. Nutr. 1992, 11, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Hadi, A.; Mohammadi, H.; Hadi, Z.; Roshanravan, N.; Kafeshani, M. Cumin (Cuminum cyminum L.) is a safe approach for management of lipid parameters: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2018, 32, 9–16. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Yalcin, H.; Elibol, M.; Sevim, P.; Bakkal, G. The effects of purslane (Portulaca oleracea L.) on serum lipid profiles and oxidative stress in atherogenic rats. Food Res. Int. 2020, 136, 109558. [Google Scholar] [CrossRef]
- Lin, S.; Huang, X.; Cheng, H.; Yang, L.; Zhang, D.; Zhang, Q.; Shi, J.; Zhang, M. Extraction and purification of alpha-linolenic acid from Portulaca oleracea L. and its effects on lipid profiles and oxidative stress in high-fat diet rats. Nutrients 2020, 12, 1704. [Google Scholar] [CrossRef]
- González, M.; Zarzuelo, A.; Guerra, J.; Menéndez, R.; Burrell, M.A.; Risco, S. Hypoglycemic activity of Portulaca oleracea in normal and diabetic rats. J. Ethnopharmacol. 2014, 93, 461–466. [Google Scholar] [CrossRef]
- Dubois, V.; Parmentier, M.; Baudet, D.; Collinet, A.; Breton, S. Fatty acid content and antioxidant activity of Portulaca oleracea extracts. Food Chem. 2007, 104, 1801–1810. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef]
- Chan, E.; Bailey, D.; Busta, F.; Cohen, R.; Schwarzschild, M. Clinical effects of plant-based lipids on plasma lipoproteins. Clin. Nutr. 2019, 38, 2349–2357. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Peng, D.; Zhang, M.; Zhang, H. Antioxidant activity of Portulaca oleracea polysaccharides and their influence on rice starch digestion. Antioxidants 2020, 9, 1075. [Google Scholar] [CrossRef]
- Rydlewski, B.; Nowakowski, A.; Lewandowska, K.; Kwiatkowska, M. Bioactive compounds in Portulaca oleracea seeds and their effects on oxidative stress in a food matrix. J. Agric. Food Chem. 2017, 65, 177–185. [Google Scholar] [CrossRef]
- Voulgaridou, G.P.; Anestopoulos, I.; Franco, R.; Panayiotidis, M.I.; Pappa, A. Antioxidant and anticancer properties of polyphenolic compounds in foods. Antioxid. Redox Signal. 2011, 15, 2027–2041. [Google Scholar] [CrossRef]
- Iftikhar, A.; Dupas-Farrugia, C.; De Leonardis, A.; Macciola, V.; Moiz, A.; Martin, D. Antioxidant potential of olive leaf (Olea europaea L.) sustainable extracts evaluated in vitro and minced beef meat. Ital. J. Food Sci. 2024, 36, 305–316. [Google Scholar] [CrossRef]
- Cheng, J.H. Lipid Oxidation in Meat. J. Nutr. Food Sci. 2016, 6, 494. [Google Scholar] [CrossRef]
- Pateiro, M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef]
- Gurinovich, G.V.; Patrakova, I.S.; Kudryashov, L.S. Study of the effect of curing mixture composition on the lipid oxidation process in meat systems. Meat Syst. 2018, 48, 31–40. [Google Scholar]
- Fan, X.; Liu, S.; Li, H.; He, J.; Feng, J.; Zhang, X.; Yan, H. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci. 2019, 147, 82–90. [Google Scholar] [CrossRef]
- Estévez, M.; Luna, C. Dietary protein oxidation: A silent threat to human health? Crit. Rev. Food Sci. 2017, 57, 3781–3793. [Google Scholar] [CrossRef]
- Šojić, B. Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 2023, 28, 2293. [Google Scholar] [CrossRef] [PubMed]
- Gatea, F.; Dumitra-Teodor, E.; Maria-Seciu, A.; Nagodă, E.; Lucian-Radu, G. Chemical constituents and bioactive potential of Portulaca pilosa L. vs. Portulaca oleracea L. Med. Chem. Res. 2017, 26, 1516–1527. [Google Scholar] [CrossRef]
- Zhao, R.; Meng, X.; Jia, G.; Yu, Y.; Song, B. Oral pre-administration of Purslane polysaccharides enhance immune responses to inactivated foot-and-mouth disease vaccine in mice. BMC Vet. Res. 2019, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Shi, S.; Jiang, L. Evaluation of antioxidant and immuno-enhancing activities of Purslane polysaccharides in gastric cancer rats. Int. J. Biol. Macromol. 2014, 68, 113–116. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; García-Carmona, F. Characterization of recombinant Beta vulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta 2012, 236, 91–100. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Azuine, M.A.; Sridhar, R.; Okuda, Y.; Tsuruta, A.; Ichiishi, E.; Mukainake, T.; Takasaki, M.; Konoshima, T.; Nishino, H.; et al. Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacol. Res. 2003, 47, 141–148. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Long, T.; Wang, S.; Yang, J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022, 12, 871. [Google Scholar] [CrossRef]
- Jain, G.; Gould, K.S. Are betalain pigments the functional homologues of anthocyanins in plants? Environ. Exp. Bot. 2015, 119, 48–53. [Google Scholar] [CrossRef]
- Christinet, L.; Burdet, F.; Zaiko, M.; Hinz, U.; Zrÿd, J. Characterization and Functional Identification of a Novel Plant 4,5-Extradiol Dioxygenase Involved in Betalain Pigment Biosynthesis in Portulaca grandiflora. Plant Physiol. 2004, 134, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Ahlert, D.; Piepenburg, K.; Kudla, J.; Bock, R. Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor. J. Plant Res. 2006, 119, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Jian-Hua, X.; Shi-Liang, C. New universal matK primers for DNA barcoding of angiosperms. J. Syst. Evol. 2011, 49, 176–181. [Google Scholar] [CrossRef]
- Chase, M.W.; Salamin, N.; Wilkinson, M.; Dunwell, J.M.; Kesanakurthi, R.P.; Haidar, N.; Savolainen, V. Land plants and DNA barcodes: Short-term and long-term goals. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1889–1895. [Google Scholar] [CrossRef]
Fatty Acid | Fatty Acid Content (% of the Total Amount of All Fatty Acid Methyl Esters) | |
---|---|---|
Control Sausages | Sausages with Purslane | |
Butyric C4:0 | Below 0.1 | Below 0.1 |
Caproic C6:0 | Below 0.1 | Below 0.1 |
Caprylic C8:0 | Below 0.1 | Below 0.1 |
Capric C10:0 | Below 0.1 | Below 0.1 |
Undecylic C11:0 | Below 0.1 | Below 0.1 |
Lauric C12:0 | Below 0.1 | Below 0.1 |
Tridecanoic C13:0 | Below 0.1 | Below 0.1 |
Myristic C14:0 | Below 0.1 | Below 0.1 |
Pentadecanoic C15:0 | Below 0.1 | Below 0.1 |
Palmitic C16:0 | 19.7 ± 2.1 | 19.2 ± 2.1 |
Margaric C17:0 | 0.4 ± 0.4 | Below 0.1 |
Stearic C18:0 | 7.6 ± 2.1 | 9.4 ± 2.1 |
Arachidic C20:0 | Below 0.1 | Below 0.1 |
Heneicosanoic C21:0 | Below 0.1 | Below 0.1 |
Behenic C22:0 | 0.6 ± 0.4 | 0.5 ± 0.4 |
Tricosanoic C23:0 | 0.3 ± 0.4 | Below 0.1 |
Lignoceric C24:0 | Below 0.1 | Below 0.1 |
Myristoleic C14:1 | Below 0.1 | Below 0.1 |
Cis-10-pentadecenoic C15:1 | Below 0.1 | Below 0.1 |
Palmitoleic C16:1 | 2.8 ± 0.4 | 2.7 ± 0.4 |
Heptadecenoic C17:1 | 0.5 ± 0.4 | 0.5 ± 0.4 |
Oleic C18:1 | 33.9 ± 2.1 | 33.6 ± 2.1 |
Elaidic C18:1 | Below 0.1 | Below 0.1 |
Gondoic C20:1 | 0.5 ± 0.4 | 1.0 ± 0.4 |
Erucic C22:1 | 0.3 ± 0.4 | Below 0.1 |
Nervonic C24:1 | 0.3 ± 0.4 | 0.5 ± 0.4 |
Linolenic C18:3ω3 | 1.4 ± 0.4 | 1.8 ± 0.4 |
Timnodonic acid C20:5ω3 | Below 0.1 | Below 0.1 |
Eicosatrienoic acid C20:3ω3 | Below 0.1 | Below 0.1 |
Docosahexaenoic C22:6ω3 | Below 0.1 | Below 0.1 |
Linoleic C18:2 ω6 | 29.7 ± 2.1 | 29.1 ± 2.1 |
Linolelaidic C18:2 ω6 | Below 0.1 | Below 0.1 |
Dihomo-γ-linolenic acid C20:3 ω6 | 0.3 ± 0.4 | Below 0.1 |
Arachidonic acid C20:4 ω6 | 0.9 ± 0.4 | 1.0 ± 0.4 |
Eicosadienoic acid C20:2 ω6 | 0.6 ± 0.4 | 0.8 ± 0.4 |
Docosadienoic acid C22:2 ω6 | Below 0.1 | Below 0.1 |
Indicator | Concentration | p-Value, Treatment Within Storage Time | ||
---|---|---|---|---|
Storage Time, Days | Control Sausages | Sausages with Purslane | ||
Peroxide number, meq/kg | 0 | 3.1 ± 0.3 | 3.5 ± 0.3 | 0.990 |
2 | 4.3 ± 0.4 | 4.1 ± 0.4 | 0.999 | |
4 | 5.0 ± 0.5 | 4.5 ± 0.5 | 0.915 | |
6 | 6.3 ± 0.3 | 7.1 ± 0.4 | 0.540 | |
8 | 8.6 ± 0.4 | 10.1 ± 0.5 | 0.013 | |
10 | 12.5 ± 0.6 | 10.9 ± 0.5 | 0.007 | |
Carbonyl compounds, nmol/mg of protein | 109.86 | 105.65 |
Item | Light Exposure | Color Characteristics | p-Value, Color Within Light Exposure | |
---|---|---|---|---|
Control Sausages | Sausages with Purslane | |||
L—lightness | Before | 62.64 ± 0.93 | 59.01 ± 0.63 | 0.988 |
After | 60.05 ± 1.25 | 56.94 ± 1.23 | 0.316 | |
a—redness | Before | 17.18 ± 0.40 | 6.85 ± 0.20 | <0.0001 |
After | 15.32 ± 0.37 | 5.51 ± 0.37 | <0.0001 | |
b—yellowness | Before | 14.83 ± 0.96 | 15.62 ± 0.42 | 0.772 |
After | 16.05 ± 1.04 | 16.84 ± 0.61 | 0.996 | |
Color stability, % | 92.30 ± 2.17 | 89.68 ± 1.74 | 0.183 |
Protein | Gene | Organism | Molecular Weight, kDa |
4,5-DOPA dioxygenase extradiol | DODA | Portulaca grandiflora | 29.92 |
Maturase K | matK | Portulaca oleracea | 60.87 |
Indicator | Results | p-Value | |
---|---|---|---|
Control Sausages | Sausages with Purslane | ||
Ferric-reducing antioxidant power (FRAP), mg GAE/g | Not detected | 13.5 ± 0.05 | <0.0001 |
DPPH radical-scavenging activity, % | 13.73 ± 0.005 | 21.70 ± 0.01 | <0.0001 |
IC50 of DPPH radical-scavenging activity, µg/mL | 76.12 ± 5.04 | 116.55 ± 10.04 | 0.002 |
Thiobarbituric Number, Storage Time, Days | Concentration, mgMA/kg | p-Value, Treatment Within Storage Time | |
---|---|---|---|
Control Sausages | Sausages with Purslane | ||
0 | Below 0.039 | Below 0.039 | |
2 | 0.047 ± 0.005 | 0.041 ± 0.004 | 0.517 |
4 | 0.108 ± 0.011 | 0.086 ± 0.009 | 0.999 |
6 | 0.101 ± 0.010 | 0.094 ± 0.009 | 0.999 |
8 | 0.140 ± 0.014 | 0.109 ± 0.011 | 0.999 |
10 | 0.202 ± 0.020 | 0.153 ± 0.015 | 0.998 |
Acid Value, Storage Time, Days | Concentration, mg KOH/g | p-Value, Treatment Within Storage Time | |
---|---|---|---|
Control Sausages | Sausages with Purslane | ||
0 | 2.0 ± 0.2 | 2.2 ± 0.2 | 0.994 |
2 | 2.7 ± 0.2 | 2.9 ± 0.2 | 0.995 |
4 | 3.2 ± 0.2 | 3.4 ± 0.2 | 0.995 |
6 | 3.4 ± 0.2 | 3.6 ± 0.3 | 0.993 |
8 | 4.0 ± 0.2 | 3.9 ± 0.3 | 0.294 |
10 | 4.8 ± 0.2 | 4.2 ± 0.3 | 0.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makangali, K.; Tultabayeva, T.; Zamaratskaia, G.; Ospankulova, G.; Tokysheva, G.; Abzhanova, S.; Zhakupova, G.; Ergalikyzy, A. Enhancing the Antioxidant Capacity and Oxidative Stability of Cooked Sausages Through Portulaca oleracea (Purslane) Supplementation: A Natural Alternative to Synthetic Additives. Appl. Sci. 2024, 14, 9986. https://doi.org/10.3390/app14219986
Makangali K, Tultabayeva T, Zamaratskaia G, Ospankulova G, Tokysheva G, Abzhanova S, Zhakupova G, Ergalikyzy A. Enhancing the Antioxidant Capacity and Oxidative Stability of Cooked Sausages Through Portulaca oleracea (Purslane) Supplementation: A Natural Alternative to Synthetic Additives. Applied Sciences. 2024; 14(21):9986. https://doi.org/10.3390/app14219986
Chicago/Turabian StyleMakangali, Kadyrzhan, Tamara Tultabayeva, Galia Zamaratskaia, Gulnazym Ospankulova, Gulzhan Tokysheva, Sholpan Abzhanova, Gulmira Zhakupova, and Ademi Ergalikyzy. 2024. "Enhancing the Antioxidant Capacity and Oxidative Stability of Cooked Sausages Through Portulaca oleracea (Purslane) Supplementation: A Natural Alternative to Synthetic Additives" Applied Sciences 14, no. 21: 9986. https://doi.org/10.3390/app14219986
APA StyleMakangali, K., Tultabayeva, T., Zamaratskaia, G., Ospankulova, G., Tokysheva, G., Abzhanova, S., Zhakupova, G., & Ergalikyzy, A. (2024). Enhancing the Antioxidant Capacity and Oxidative Stability of Cooked Sausages Through Portulaca oleracea (Purslane) Supplementation: A Natural Alternative to Synthetic Additives. Applied Sciences, 14(21), 9986. https://doi.org/10.3390/app14219986