Unique Triboelectric Nanogenerator Using Carbon Nanotube Composite Papers
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of CNT Composite Paper
- (1)
- Mix the CNTs and dispersant in pure water.
- (2)
- Prepare the CNT dispersion by dispersing the mixture obtained in (1) with an ultrasonic homogenizer for 1 h.
- (3)
- Mix pulp material in pure water.
- (4)
- Prepare a pulp (raw material of paper, derived from eucalyptus) dispersion by stirring the mixture obtained in (3) with an agitator for 1 h.
- (5)
- Mix and stir the CNT dispersion prepared in (2) with the pulp dispersion prepared in (4) to prepare a mixture.
- (6)
- Pour the mixture prepared in (5) into the paper-making apparatus to dehydrate it.
- (7)
- Remove the dehydrated raw ingredients prepared in (6) from the apparatus and subject them to heat pressing to enable drying and forming, resulting in the CNT composite paper.
2.2. Construction of and Experiments on TENG Based on CNT Composite Papers
2.3. Investigation of Performance Changes Due to Changes in CNT Composite Paper-Making Conditions
2.3.1. Effect of Changing Amount of CNTs
2.3.2. Effect of Changes in Pulp Amount in CNT Composite Paper
3. Results
3.1. Performance Evaluation of TENG Using CNT Composite Paper
3.2. Investigation of Performance Changes Due to Changes in CNT Composite Paper-Making Conditions
3.2.1. Effect of Changing Amount of CNTs
3.2.2. Effect of Changes in Pulp Amount in CNT Composite Paper
4. Discussion
4.1. Performance Evaluation of TENG Using CNT Composite Paper
4.2. Effect of Changing Amount of CNTs
4.3. Effect of Changes in Pulp Amount in CNT Composite Paper
4.4. Future Issues
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. NPJ Flex. Electron. 2017, 1, 10. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kim, D.-W.; Tcho, I.-W.; Kim, J.-K.; Kim, M.-S.; Choi, Y.-K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Kang, M.; Park, J.; Kim, T.Y.; Park, K.; Seo, J. Autonomously self-healing, adhesive, and stretchable triboelectric nanogenerator using multifunctional hydrogel-elastomer double layer with a power management circuit. Adv. Electron. Mater. 2024, 10, 2400013. [Google Scholar] [CrossRef]
- Pinming, C.; Wongwiriyapan, W.; Rattanamai, S.; Ketama, N.; Treetong, A.; Ikuno, T.; Tumcharern, G.; Klamchuen, A. Carbon nanotube/polydimethylsiloxane composite micropillar arrays using non-lithographic silicon nanowires as a template for performance enhancement of triboelectric nanogenerators. Nanotechnology 2021, 32, 095303. [Google Scholar] [CrossRef]
- Zhou, Q.; Takita, R.; Ikuno, T. Improving the performance of a triboelectric nanogenerator by using anasymmetric TiO2/PDMS composite layer. Nanomaterials 2023, 13, 832. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, J.; Si, Y.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140. [Google Scholar] [CrossRef]
- Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J.M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.; Chen, J.; Lu, S.; Zhou, H.; Wang, T.; Wang, A.; Zhang, Z.; Guo, S.; Mu, X.; et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.; Ding, Z.; Li, Z.; Zheng, H.; Fu, J.; Diao, C.; Zhang, X.; Tian, J.; Zi, Y. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2019, 57, 616–624. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Li, Z.; Fan, X.; Zi, Y.; Jing, Q.; Guo, H.; Wen, Z.; Pradel, K.C.; Niu, S.; et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical micro-tubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon nanotubes: Properties and application. In Materials Science and Engineering: R: Reports; Elsevier: Amsterdam, The Netherlands, 2004; Volume 43, pp. 61–102. [Google Scholar]
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56. [Google Scholar] [CrossRef]
- Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. (Eds.) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Jorio, A.; Dresselhaus, M.S.; Dresselhaus, G. (Eds.) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Hata, K. Great expectations for a dream material, 21st century industrial revolution. AIST Stories 2013, 1, 18–19. [Google Scholar]
- Lau, A.K.-T.; Hui, D. The revolutionary creation of new advanced materials—Carbon nanotube composites. Compos. Part B Eng. 2002, 33, 263–277. [Google Scholar] [CrossRef]
- Khare, R.; Bose, S. Carbon nanotube based composites—A review. J. Miner. Mater. Charact. Eng. 2005, 4, 31–46. [Google Scholar] [CrossRef]
- Byrne, M.T.; Gun’ko, Y.K. Recent advances in research on carbon nanotube–polymer composites. Adv. Mater. 2010, 22, 1672–1688. [Google Scholar] [CrossRef]
- Esawi, A.M.K.; Farag, M.M. Carbon nanotube reinforced composites: Potential and current challenges. Mater. Des. 2007, 28, 2394–2401. [Google Scholar] [CrossRef]
- Oya, T.; Ogino, T. Production of electrically conductive paper by adding carbon nanotubes. Carbon 2008, 46, 169–171. [Google Scholar] [CrossRef]
- Kou, Y.; Oya, T. Unique dye-sensitized solar cell using carbon nanotube composite-papers with gel electrolyte. J. Compos. Sci. 2023, 7, 232. [Google Scholar] [CrossRef]
- Ampo, T.; Oya, T. Development of paper actuators based on carbon-nanotube-composite paper. Molecules 2021, 26, 1463. [Google Scholar] [CrossRef]
- Miyama, A.; Oya, T. Improved performance of thermoelectric power generating paper based on carbon nanotube composite papers. Carbon Trends 2022, 7, 100149. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, W.; Liu, Y.; Zhao, J.; Yuan, J.; Chi, M.; Meng, X.; Du, G.; Cai, C.; Wang, S.; et al. Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 2023, 106, 108079. [Google Scholar] [CrossRef]
- Zhang, S.; Long, Q.; Jiang, G.; Li, X.; Zhou, J.; Shao, L.; Zeng, S.; Zhao, D. A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering. Int. J. Biol. Macromol. 2024, 277, 134520. [Google Scholar] [CrossRef]
- Feng, X.; Xing, C.; Wang, C.; Tian, Y.; Shang, S.; Liu, H.; Huang, X.; Jiang, J.; Song, Z.; Zhang, H. Degradable, anti-swelling, high-strength cellulosic hydrogels via salting-out and ionic coordination. Int. J. Biol. Macromol. 2024, 267, 131536. [Google Scholar] [CrossRef]
- Mata, A.; Fleischman, A.J.; Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 2005, 7, 281–293. [Google Scholar] [CrossRef]
- Jakob, M.; Mahendran, A.R.; Gindl-Altmutter, W.; Bliem, P.; Konnerth, J.; Müller, U.; Veigel, S. The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Prog. Mater. Sci. 2022, 125, 100916. [Google Scholar] [CrossRef]
- Toyomasu, R.; Oya, T. Development and improvement of “paper actuator” based on carbon-nanotube composite paper with its unique structures. J. Compos. Sci. 2024, 8, 391. [Google Scholar] [CrossRef]
- Shan, C.; Li, K.; Cheng, Y.; Hu, C. Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 2023, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef]
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
CNT | SG101 | (6,5) | (7,6) | - | SG101 | (6,5) | (7,6) | - |
Pulp [mg] | 200 | 200 | 200 | 200 | 100 | 100 | 100 | 100 |
Contained CNTs | SG101 | (6,5) | (7,6) | NC7000 |
---|---|---|---|---|
Sheet resistance [Ω/sq.] | 2.88 | 16.54 | 75.12 | 42.20 |
Thickness [mm] | 0.081 | 0.099 | 0.098 | 0.063 |
Amount of CNTs | 5 mg | 15 mg | 30 mg | 0 mg |
---|---|---|---|---|
Sheet resistance [Ω/sq.] | 12.05 | 3.39 | 2.37 | - |
Thickness [mm] | 0.115 | 0.108 | 0.291 | 0.147 |
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Sheet resistance [Ω/sq.] | 1.130 | 7.603 | 6.617 | - | 1.357 | 5.817 | 8.303 | - |
Thickness [mm] | 0.108 | 0.166 | 0.126 | 0.108 | 0.083 | 0.126 | 0.113 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okochi, K.; Oya, T. Unique Triboelectric Nanogenerator Using Carbon Nanotube Composite Papers. Appl. Sci. 2024, 14, 10030. https://doi.org/10.3390/app142110030
Okochi K, Oya T. Unique Triboelectric Nanogenerator Using Carbon Nanotube Composite Papers. Applied Sciences. 2024; 14(21):10030. https://doi.org/10.3390/app142110030
Chicago/Turabian StyleOkochi, Kazuki, and Takahide Oya. 2024. "Unique Triboelectric Nanogenerator Using Carbon Nanotube Composite Papers" Applied Sciences 14, no. 21: 10030. https://doi.org/10.3390/app142110030
APA StyleOkochi, K., & Oya, T. (2024). Unique Triboelectric Nanogenerator Using Carbon Nanotube Composite Papers. Applied Sciences, 14(21), 10030. https://doi.org/10.3390/app142110030