Intra- and Interpatient ECG Heartbeat Classification Based on Multimodal Convolutional Neural Networks with an Adaptive Attention Mechanism
Abstract
:1. Introduction
- Presentation of the results from the proposed structure using interpatient and intrapatient approaches.
- Evaluation and recommendation of the HSFC technique as an additional method for transforming ECG signals into images for use in trained CNNs to achieve arrhythmia classification.
- Evaluation and improvement of arrhythmia classification results by incorporating a multimodal CNN which integrates an attention module based on convolution with an adaptive kernel.
- Demonstration of the possibility of improving the results of arrhythmia classification via ECG data obtained from lead V1 (electrode positioned at a specific point on the chest) together with data from the MLII lead (mostly used in clinical practice and in studies in the literature).
2. Methodology
2.1. Overview
2.2. Input with Transformation of ECG Signals into Images
2.3. Multimodal Convolutional Layers
Classifier with an Attention Mechanism
3. Experiment Setup
3.1. Database of ECG Signals
Preprocessing of the ECG Signal
3.2. Training and Testing Database
3.2.1. Interpatient Database
3.2.2. Intrapatient Database
3.2.3. Data Augmentation
3.3. Classifier Evaluation Metrics
- Accuracy: Accuracy is the percentage of correct diagnoses of cardiac arrhythmias (or normal cases). Importantly, in unbalanced databases, such as the MIT-BIH, the majority of cases are the normal class, requiring other indicators to better evaluate the classifier.
- Precision: Precision is important in scenarios where the cost of false positives is high (for example, an incorrect diagnosis of arrhythmia). High precision means that the model produces fewer false positives.
- Recall or Sensitivity: Recall is essential in situations where it is important to minimize false negatives, i.e., ensure that arrhythmias are detected, even if there are some false positives.
- Specificity: Specificity is important in evaluating false positives, indicating whether the model erroneously classifies a healthy patient as having an arrhythmia.
- F1 score: The F1 score is a metric that balances the ability of the model to correctly identify arrhythmias (recall) with the lowest possible number of false positives (precision). A high F1 score indicates a good balance between detecting arrhythmias and avoiding false positives.
3.4. CNN-AM Training
4. Results
4.1. Interpatient Approach Results
4.2. Intrapatient Approach Results
5. Discussion
5.1. Interpatient Approach
5.2. Intrapatient Approach
5.3. Comparison of Results with the State-of-the-Art Methods
5.4. CNN-MA Component Analysis: Ablation Study
- AlexNet with ECG signal-to-image transformation with RP (M1);
- AlexNet with ECG signal-to-image transformation with the HSFC (M2);
- CNN-AM removing the attention module and for an MLII lead (M3);
- CNN-AM with the attention module and for an MLII lead (M4);
- CNN-AM removing the attention module and for two MLII + V leads (M5);
- CNN-AM with the attention module and for two leads MLII + V leads (M6).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO—World Health Organization. Cardiovascular Diseases 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 7 October 2024).
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation 2023, 147, 8. [Google Scholar] [CrossRef]
- Izci, E.; Ozdemir, M.A.; Egirmenci, M.; Akan, A. Cardiac arrhythmia detection from 2D ECG images by using deep learning technique. In Proceedings of the Medical Technologies Congress (TIPTEKNO), İzmir, Turkey, 3–5 October 2019. [Google Scholar] [CrossRef]
- Ahmad, Z.; Tabassum, A.; Guan, L.; Khan, N.M. ECG Heartbeat Classification Using Multimodal Fusion. IEEE Access 2021, 9, 100615–100626. [Google Scholar] [CrossRef]
- Fradi, M.; Khriji, L.; Machhout, M.; Hossen, A. Automatic heart disease class detection using convolutional neural network architecture-based various optimizers-networks. IET Smart Cities 2021, 3, 3–15. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Ali, W.; Abdullah, T.A.A.; Malebary, S.J. Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model. Mathematics 2023, 11, 3. [Google Scholar] [CrossRef]
- Rawal, V.; Prajapati, P.; Darji, A. Hardware implementation of 1D-CNN architecture for ECG arrhythmia classification. Biomed. Signal Process. Control 2023, 85, 104865. [Google Scholar] [CrossRef]
- Mewada, H. 2D-wavelet encoded deep CNN for image-based ECG classification. Multimed. Tools Appl. 2023, 82, 20553–20569. [Google Scholar] [CrossRef]
- Zhou, F.; Fang, D. Multimodal ECG heartbeat classification method based on a convolutional neural network embedded with FCA. Sci. Rep. 2024, 14, 8804. [Google Scholar] [CrossRef] [PubMed]
- Asfand-e-yar, M.; Hashir, Q.; Shah, A.A.; Malik, H.A.N.; Alourani, A.; Khalil, W. Multimodal CNN-DDI: Using multimodal CNN for drug to drug interaction associated events. Sci. Rep. 2024, 14, 4076. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Y.; Han, H.; Huang, Z.; Li, Q.; Mu, J. Mobile Traffic Prediction in Consumer Applications: A Multimodal Deep Learning Approach. IEEE Trans. Consum. Electron. 2024, 70, 3425–3435. [Google Scholar] [CrossRef]
- Tanioka, S.; Aydin, O.U.; Hilbert, A.; Ishida, F.; Tsuda, K.; Araki, T.; Nakatsuka, Y.; Yago, T.; Kishimoto, T.; Ikezawa, M.; et al. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal neural network. Sci. Rep. 2024, 14, 16465. [Google Scholar] [CrossRef]
- Wajid, M.A.; Zafar, A.; Terashima-Marín, H.; Wajid, M.S. Neutrosophic-CNN-based image and text fusion for multimodal classification. J. Intell. Fuzzy Syst. 2023, 45, 1039–1055. [Google Scholar] [CrossRef]
- Wang, D.; Gan, J.; Mao, J.; Chen, F.; Yu, L. Forecasting power demand in China with a CNN-LSTM model including multimodal information. Energy 2023, 263 Part E, 126012. [Google Scholar] [CrossRef]
- Wang, T.; Lu, C.; Sun, Y.; Yang, M.; Liu, C.; Ou, C. Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network. Entropy 2021, 23, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, M.; Song, L.; Wu, L.; Baiyang, W. Multi-classification method of arrhythmia based on multi-scale residual neural network and multi-channel data fusion. Front. Physiol. 2023, 14, 1253907. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z. BrainMRNet: Brain Tumor Detection using Magnetic Resonance Images with a Novel Convolutional Neural Network Model. Med. Hypotheses 2020, 134, 109531. [Google Scholar] [CrossRef]
- Liu, M.; Yang, J. Image Classification of Brain tumor based on Channel Attention Mechanism. J. Phys. Conf. Ser. 2021, 2035, 012029. [Google Scholar] [CrossRef]
- Jun, W.; Zheng, L. Brain Tumor Classification Based on Attention Guided Deep Learning Model. Int. J. Comput. Intell. Syst. 2022, 15, 35. [Google Scholar] [CrossRef]
- Tang, C.; Li, B.; Sun, J.; Wang, S.-H.; Zhang, Y.-D. GAM-SpCaNet: Gradient awareness minimization-based spinal convolution attention network for brain tumor classification. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Hasan, K.F.; Sultana, S.; Uddin, S.; Lio’, P.; Quinn, J.M.W.; Moni, M.A. HARDC: A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN. Neural Netw. 2023, 162, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Moreira, G.; Menotti, D.; Luz, E. Inter-Patient ECG Heartbeat Classification with Temporal VCG Optimized by PSO. Sci. Rep. 2017, 7, 10543. [Google Scholar] [CrossRef]
- Dias, F.M.; Monteiro, H.L.M.; Cabral, T.W.; Naji, R.; Kuehni, M.; Luz, E.J.S. Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm. Comput. Methods Programs Biomed. 2021, 202, 105948. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Liu, Y.; Wang, K.; Zhao, N.; Yuan, Y.; Li, Q. Automatic detection of QRS complexes using dual channels based on U-Net and bidirectional long short-term memory. IEEE J. Biomed. Health Inform. 2021, 25, 4. [Google Scholar] [CrossRef]
- ANSI/AAMI EC57:2012 (R2020). Testing And Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms 2020. AAMI. Available online: https://webstore.ansi.org/Standards/AAMI/ANSIAAMIEC572012R2020 (accessed on 7 October 2024).
- Mathunjwa, B.M.; Lin, Y.-T.; Lin, C.-H.; Abbod, M.F.; Shieh, J.-S. ECG arrhythmia classification by using a recurrence plot and convolutional neural network. Biomed. Signal Process. Control 2021, 64, 102262. [Google Scholar] [CrossRef]
- Farag, M.M. A Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection at the Edge. IEEE Access 2022, 10, 94469–94486. [Google Scholar] [CrossRef]
- Adib, E.; Fernandez, A.S.; Afghah, F.; Prevost, J.J. Synthetic ECG Signal Generation Using Probabilistic Diffusion Models. IEEE Access 2023, 11, 75818–75828. [Google Scholar] [CrossRef]
- Borrell, R.; Cajas, J.C.; Mira, D.; Taha, A.; Koric, S.; Vázquez, M.; Houzeaux, G. Parallel mesh partitioning based on space filling curves. Comput. Fluids Elsevier 2018, 173, 15. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W. Spatial and temporal variation and convergence in the efficiency of high-standard farmland construction: Evidence in China. J. Clean. Prod. 2024, 452, 142200. [Google Scholar] [CrossRef]
- Hilbert, D. Ueber die stetige Abbildung einer Line auf ein Flächenstück. Math. Ann. 1891, 38, 459–460. [Google Scholar] [CrossRef]
- Feng, C.; Shu, S.; Wang, J.; Li, Z. The parallel generation of 2-D Hilbert Space-filling Curve on GPU. In Proceedings of the 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China, 16–18 October 2012. [Google Scholar] [CrossRef]
- Skilling, J. Programming the Hilbert curve. AIP Conf. Proc. 2004, 707, 381–387. [Google Scholar] [CrossRef]
- Wang, Z.; Oates, T. Spatially Encoding Temporal Correlations to Classify Temporal Data Using Convolutional Neural Networks. arXiv 2015, arXiv:1509.07481. [Google Scholar] [CrossRef]
- Earl, D. Script to Plot 1D Data in 2D Using the Hilbert Curve. Honestly a Pretty Terrible Visualization Technique for Conveying Information, but It Looks Cool 2013. Santa Cruz, CA, USA. Available online: https://github.com/dentearl/simpleHilbertCurve (accessed on 7 October 2024).
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhys. Lett. 1987, 4, 9. [Google Scholar] [CrossRef]
- Casdagli, M.C. Recurrence plots revisited. Phys. D Nonlinear Phenom. 1997, 108, 12–44. [Google Scholar] [CrossRef]
- Faria, F.A.; Almeida, J.; Alberton, B.; Morellato, L.P.C.; Torres, R.S. Fusion of time series representations for plant recognition in phenology studies. Pattern Recognit. Lett. 2016, 83, 205–214. [Google Scholar] [CrossRef]
- Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. arXiv 2014, arXiv:1404.5997. [Google Scholar] [CrossRef]
- Ahmad, Z.; Khan, N. CNN-Based Multistage Gated Average Fusion (MGAF) for Human Action Recognition Using Depth and Inertial Sensors. IEEE Sens. J. 2021, 21, 3. [Google Scholar] [CrossRef]
- Moody, G.; Mark, R. MIT-BIH Arrhythmia Database; Version 1.0.0; PhysioNet: MIT Laboratory for Computational Physiology: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Luz, E.J.S.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 2016, 127, 144–164. [Google Scholar] [CrossRef]
- Emrich, J.; Koka, T.; Wirth, S.; Muma, M. Accelerated Sample-Accurate R-Peak Detectors Based on Visibility Graphs. In Proceedings of the 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland, 4–8 September 2023. [Google Scholar] [CrossRef]
- Chazal, P.d.; O’dwyer, M.; Reilly, R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 2004, 51, 7. [Google Scholar] [CrossRef]
- Mar, T.; Zaunseder, S.; Martínez, J.P.; Llamedo, M.; Poll, R. Optimization of ECG classification by means of feature selection. IEEE Trans. Biomed. Eng. 2011, 58, 8. [Google Scholar] [CrossRef]
- Llamedo, M.; Martínez, J.P. Heartbeat Classification Using Feature Selection Driven by Database Generalization Criteria. IEEE Trans. Biomed. Eng. 2011, 58, 3. [Google Scholar] [CrossRef]
- Luz, E.; Menotti, D. How the choice of samples for building arrhythmia classifiers impact their performances. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar] [CrossRef]
- Soria, M.L.; Martínez, J.P. Analysis of multidomain features for ECG classification. In Proceedings of the 36th Annual Computers in Cardiology Conference (CinC), Park City, UT, USA, 13–16 September 2009; Available online: https://ieeexplore.ieee.org/document/5445344 (accessed on 7 October 2024).
- Lin, C.-C.; Yang, C.-M. Heartbeat classification using normalized RR intervals and morphological features. Math. Probl. Eng. 2014, 1, 712474. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Freitas, V.L.S.; Moreira, G.J.P.; Luz, E.J.S. Explorando Redes Neurais de Grafos para Classificação de Arritmias. In Anais do XXII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS); Sociedade Brasileira de Computação (SBC): Teresina, Brazil, 2022. [Google Scholar] [CrossRef]
- Zahid, M.U.; Kiranyaz, S.; Gabbouj, M. Global ECG Classification by Self-Operational Neural Networks with Feature Injection. IEEE Trans. Biomed. Eng. 2023, 70, 205–215. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 6 August 2017; Available online: https://dl.acm.org/doi/10.5555/3305381.3305404 (accessed on 7 October 2024).
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Available online: https://dl.acm.org/doi/10.5555/3045118.3045167 (accessed on 7 October 2024).
- Awais, M.; Bin Iqbal, T.; Bae, S.-H. Revisiting Internal Covariate Shift for Batch Normalization. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 11. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Crammer, K.; Singer, Y. On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2001, 2, 265–292. Available online: https://dl.acm.org/doi/10.5555/944790.944813 (accessed on 7 October 2024).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar] [CrossRef]
- Morady, F. Catheter Ablation of Supraventricular Arrhythmias: State of the Art. J. Cardiovasc. Electrophysiol. 2004, 15, 124–139. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, J.; Luo, X.; Choi, K.-S.; Wu, X. Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 2014, 46, 79–89. [Google Scholar] [CrossRef]
- Kachuee, M.; Fazeli, S.; Sarrafzadeh, M. ECG Heartbeat Classification: A deep transferable representation. In Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, USA, 4–7 June 2018. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Yao, B.; He, W. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Zhai, X.; Tin, C. Automated ECG Classification using Dual Heartbeat Coupling based on Convolutional Neural Network. IEEE Access 2018, 6, 27465–27472. [Google Scholar] [CrossRef]
- Shaker, A.M.; Tantawi, M.; Shedeed, H.A.; Tolba, M.F. Generalization of convolutional neural networks for ECG classification using generative adversarial networks. IEEE Access 2020, 8, 35592–35605. [Google Scholar] [CrossRef]
- Xu, X.; Jeong, S.; Li, J. Interpretation of electrocardiogram (ECG) rhythm by combined CNN and BiLSTM. IEEE Access 2020, 8, 125380–125388. [Google Scholar] [CrossRef]
- Qiao, F.; Li, B.; Zhang, Y.; Guo, H.; Li, W.; Zhou, S. A Fast and Accurate Recognition of ECG Signals Based on ELM-LRF and BLSTM Algorithm. IEEE Access 2020, 8, 71189–71198. [Google Scholar] [CrossRef]
- Seitanidis, P.; Gialelis, J.; Papaconstantinou, G. Identifying heart arrhythmias through multi-level algorithmic processing of ECG on edge devices. Procedia Comput. Sci. 2022, 203, 699–706. [Google Scholar] [CrossRef]
Layer Name | Output Size | Kernel Size | Padding | Strid |
---|---|---|---|---|
Input | 3× [224 × 224] | |||
Features: | ||||
Conv2D | [3 × 64] | [11 × 11] | [6 × 6]: Reflect | [4 × 4] |
ReLU | ||||
MaxPool2D | [3] | [0] | [2] | |
Conv2D | [64 × 192] | [5 × 5] | [2 × 2]: Reflect | [1 × 1] |
ReLU | ||||
MaxPool2D | [3] | [0] | [2] | |
Conv2D | [192 × 384] | [3 × 3] | [1 × 1]: Reflect | [1 × 1] |
ReLU | ||||
Conv2D | [384 × 256] | [3 × 3] | [1 × 1]: Reflect | [1 × 1] |
ReLU | ||||
Conv2D | [256 × 256] | [3 × 3] | [1 × 1]: Reflect | [1 × 1] |
ReLU | ||||
MaxPool2D | [3] | [0] | [2] | |
Avg. pool: | ||||
Adaptive AvgPool2D | 256 × [6 × 6] |
Group | Note | Class |
---|---|---|
N Any heartbeat not categorized as S, V, F or Q. | N | Normal heartbeat. |
L | Left bundle branch block heartbeat. | |
R | Right bundle branch block heartbeat. | |
e | Atrial escape heartbeat. | |
j | Nodal (junctional) escape heartbeat. | |
S Supraventricular ectopic heartbeat. | A | Atrial premature heartbeat. |
a | Aberrant atrial premature heartbeat. | |
J | Nodal (junctional) premature heartbeat. | |
S | Supraventricular premature heartbeat. | |
V Ventricular ectopic heartbeat. | V | Premature ventricular contraction. |
E | Ventricular escape heartbeat. | |
F Fusion heartbeat. | F | Fusion of ventricular and normal beats. |
Q Unknown heartbeat. | P or / | Rhythmic heartbeat. |
f | Fusion of rhythmic and normal heartbeat. | |
U | Unclassifiable heartbeat. |
Consolidated | ||
---|---|---|
DS1 | DS2 | |
N | 45,781 | 43,598 |
S | 975 | 667 |
V | 3,786 | 3,219 |
50,542 | 47,484 |
DS1 + DS2 | Training (80%) | Test (20%) | |
---|---|---|---|
N | 89,379 | 71,503 | 17,876 |
S | 1642 | 1314 | 328 |
V | 7005 | 5604 | 1401 |
98,026 | 78,421 | 19,605 |
Class | Original Training Data | Training Data with Data Augmentation |
---|---|---|
N | 4781 | 45,781 |
S | 975 | 30,000 |
V | 3786 | 10,000 |
Total: | 50,542 | 85,781 |
Class | Original Training Data | Training Data with Data Augmentation |
---|---|---|
N | 71,503 | 71,503 |
S | 1314 | 30,000 |
V | 5604 | 10,000 |
Total: | 78,421 | 111,503 |
Acc | Pre | Recall | Spe | F1 | |
---|---|---|---|---|---|
MLII-F1 | 97.29 | 74.41 | 78.33 | 95.42 | 75.96 |
MLII-S | 83.89 | 59.51 | 84.86 | 93.24 | 61.86 |
Acc | Pre | Recall | Spe | F1 | |
---|---|---|---|---|---|
MLII + V-F1 | 98.48 | 94.15 | 80.23 | 96.34 | 81.91 |
MLII + V-S | 95.47 | 72.28 | 87.21 | 96.62 | 75.25 |
N | S | V | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | |
MLII-F1 | 98.3 | 98.9 | 88.0 | 98.6 | 41.1 | 28.0 | 98.5 | 33.3 | 95.6 | 96.2 | 99.7 | 95.9 |
MLII-S | 83.3 | 99.6 | 95.9 | 90.7 | 77.5 | 7.6 | 86.6 | 13.9 | 93.8 | 71.4 | 97.3 | 81.1 |
N | S | V | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | |
MLII + V-F1 | 99.4 | 99.1 | 88.4 | 99.2 | 43.3 | 56.3 | 99.7 | 49.0 | 98.0 | 97.0 | 99.7 | 97.5 |
MLII + V-S | 95.8 | 99.4 | 97.0 | 97.6 | 69.3 | 20.2 | 96.1 | 31.3 | 96.6 | 97.2 | 99.8 | 96.6 |
Acc | Pre | Recall | Spe | F1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLII | 99.59 | 97.17 | 95.97 | 99.04 | 96.56 | |||||||||||
MLII + V | 99.70 | 98.01 | 97.26 | 99.28 | 97.64 | |||||||||||
N | S | V | ||||||||||||||
Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | |||||
MLII | 99.8 | 99.7 | 97.3 | 99.8 | 89.2 | 92.7 | 99.9 | 90.9 | 98.8 | 99.1 | 99.9 | 99.0 | ||||
MLII + V | 99.9 | 99.8 | 97.9 | 99.8 | 92.9 | 94.7 | 99.9 | 93.8 | 99.0 | 99.6 | 99.9 | 99.3 |
Work | Method | Acc % | Pre % | Recall % | Spe % | F1 % |
---|---|---|---|---|---|---|
Chazal et al. (2004) [44] | Statistical | 83.88 | 45.57 | 66.00 | 96.05 | 59.74 |
Soria, Martinez (2009) [48] | LDA + QDA | 91.47 | 69.89 | 89.98 | 94.60 | 76.43 |
Llamedo, Martínez (2011) [46] | QDA | 90.62 | 66.26 | 86.18 | 95.83 | 66.61 |
Lin, Yang (2014) [49] | LDA | 93.00 | 67.60 | 83.50 | - | - |
Zhang et al. (2014) [61] | SVM | 86.66 | - | - | - | - |
Garcia et al. (2017) [22] | ANN + SVM + PSO | 92.38 | 70.12 | 81.10 | 92.12 | 74.59 |
Wang et al. (2021) [15] | Wavlet + CNN | 97.48 | 70.75 | 67.47 | 96.01 | 68.76 |
Dias et al. (2021) [23] | LDA | 80.58 | 59.37 | 84.84 | 94.35 | 60.77 |
Oliveira et al. (2022) [50] | NGN + GV | 86.12 | 76.72 | 77.04 | 92.87 | 76.88 |
Zahid et al. (2023) [51] | Self-ONN | 98.19 | 93.25 | 91.35 | 96.37 | 92.27 |
CNN-AM–MLII-F1 | 97.29 | 74.41 | 78.33 | 95.42 | 75.96 | |
CNN-AM–MLII-S | 83.89 | 59.51 | 84.86 | 93.24 | 61.86 | |
CNN-AM–MLII + V-F1 | 98.48 | 94.15 | 80.23 | 96.34 | 81.91 | |
CNN-AM–MLII + V-S | 95.47 | 72.28 | 87.21 | 96.62 | 75.25 |
Work | Acc % | Recall % | Pre % | F1 Score % | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | S | V | N | S | V | N | S | V | ||
Chazal et al. (2004) [44] | 83.88 | 86.9 | 75.9 | 77.7 | 99.2 | 38.5 | 81.6 | 92.6 | 51.1 | 79.6 |
Soria, Martinez (2009) [48] | 91.47 | 91.7 | 88.3 | 89.9 | 98.9 | 39.5 | 71.2 | 95.2 | 54.6 | 79.5 |
Llamedo, Martínez (2011) [46] | 90.62 | 91.8 | 84.8 | 81.9 | 99.5 | 10.9 | 88.4 | 95.5 | 19.3 | 85.1 |
Lin, Yang (2014) [49] | 93.00 | 91.6 | 81.4 | 86.2 | 99.3 | 31.6 | 31.6 | 95.3 | 45.5 | 79.5 |
Zhang et al. (2014) [61] | 86.66 | 88.9 | 79.1 | 85.5 | 99.0 | 36.0 | 92.8 | - | - | - |
Garcia et al. (2017) [22] | 92.38 | 94.0 | 62.0 | 87.3 | 98.0 | 53.0 | 59.4 | 95.9 | 57.1 | 70.7 |
Wang et al. (2021) [15] | 97.48 | 99.4 | 74.6 | 95.7 | 98.2 | 89.5 | 93.2 | 98.8 | 81.4 | 94.4 |
Dias et al. (2021) [23] | 80.58 | 79.6 | 91.3 | 87.3 | 99.5 | 40.3 | 93.2 | 88.5 | 56.0 | 90.1 |
Oliveira et al. (2022) [50] | 86.12 | 99.8 | 46.1 | 85.2 | 98.6 | 44.9 | 86.6 | 99.2 | 45.5 | 85.9 |
Zahid et al. (2023) [51] | 98.19 | 99.3 | 83.3 | 91.4 | 98.9 | 83.5 | 97.4 | 99.1 | 83.4 | 94.3 |
CNN-AM–MLII-F1 | 97.29 | 98.3 | 41.1 | 95.6 | 98.9 | 28.0 | 96.2 | 98.6 | 33.3 | 95.9 |
CNN-AM–MLII-S | 83.89 | 83.3 | 77.5 | 93.8 | 99.6 | 7.6 | 71.4 | 90.7 | 13.9 | 81.1 |
CNN-AM–MLII + V-F1 | 98.48 | 99.4 | 43.3 | 98.0 | 99.1 | 56.3 | 97.0 | 99.2 | 49.0 | 97.5 |
CNN-AM–MLII + V-S | 95.47 | 95.8 | 69.3 | 96.6 | 99.4 | 20.2 | 97.2 | 97.6 | 31.3 | 96.9 |
Work | Method | Acc % | Pre % | Recall % | Spec % | F1 % |
---|---|---|---|---|---|---|
Kachuee et al. (2018) [62] | CNN | 95.90 | 95.20 | 95.10 | - | - |
Izci et al. (2019) [3] | CNN | 92.96 | 90.08 | 80.08 | 98.14 | 82.17 |
Huang et al. (2019) [63] | CNN | 99.00 | - | - | - | - |
Zhai, Tin (2018) [64] | CNN | 96.05 | 65.91 | 72.06 | 97.83 | 68.06 |
Shaker et al. (2020) [65] | CNN | 98.35 | 82.24 | 93.82 | 99.01 | 87.29 |
Xu et al. (2020) [66] | SVM + RF + CNN | 95.90 | 96.34 | 95.90 | - | 95.92 |
Quiao et al. (2020) [67] | DELM-LRF-BLSTM | 99.32 | 98.30 | 97.15 | - | 97.71 |
He et al. (2021) [24] | SVM + ANN | 98.29 | 99.22 | 98.29 | - | - |
Ahmad et al. (2021) [4] | CNN + SVM | 99.70 | 98.00 | 98.00 | - | - |
Seitanidis et al. (2022) [68] | CNN | 95.20 | - | 95.20 | 98.80 | - |
Islam et al. (2023) [21] | ANN + CNN | 99.60 | 97.66 | 99.60 | - | 98.21 |
Mewada (2023) [8] | CNN | 99.52 | 95.12 | 96.18 | - | 95.64 |
Zhou, Fang (2024) [9] | CNN-FCA | 99.66 | 84.19 | 97.92 | 99.70 | 87.72 |
CNN-AM MLII | 99.59 | 97.17 | 95.97 | 99.04 | 96.56 | |
CNN-AM MLII + V | 99.70 | 98.01 | 97.26 | 99.28 | 97.64 |
Acc | Pre | Recall | Spe | F1 | ||
---|---|---|---|---|---|---|
M1 | MLII | 96.74 | 73.02 | 77.54 | 94.64 | 74.40 |
M2 | MLII | 97.14 | 73.42 | 76.28 | 94.92 | 74.69 |
M3 | MLII-f1 | 97.32 | 74.72 | 78.39 | 95.37 | 76.02 |
MLII-S | 85.32 | 62.39 | 83.98 | 93.43 | 64.01 | |
M4 | MLII-F1 | 97.29 | 74.41 | 78.33 | 95.42 | 75.96 |
MLII-S | 83.89 | 59.51 | 84.86 | 93.24 | 61.86 | |
M5 | MLII + V-F1 | 98.15 | 81.17 | 80.18 | 96.30 | 80.56 |
MLII + V-S | 92.79 | 63.84 | 69.17 | 91.9 | 62.70 | |
M6 | MLII + V-F1 | 98.48 | 94.15 | 80.23 | 96.34 | 81.91 |
MLII + V-S | 95.47 | 72.28 | 87.21 | 96.62 | 75.25 |
No. | S | V | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | ||
M1 | MLII | 97.9 | 98.8 | 86.1 | 98.3 | 42.0 | 23.5 | 98.1 | 30.1 | 92.8 | 96.8 | 99.8 | 94.7 |
M2 | MLII | 98.3 | 98.8 | 86.6 | 98.5 | 36.3 | 28.5 | 98.7 | 31.9 | 94.3 | 93.0 | 99.5 | 93.6 |
M3 | MLII-F1 | 98.3 | 98.9 | 97.8 | 98.6 | 40.8 | 26.2 | 98.4 | 31.9 | 96.1 | 99.1 | 99.9 | 97.6 |
MLII-S | 84.8 | 99.5 | 94.9 | 91.6 | 72.1 | 7.4 | 87.1 | 13.4 | 95.1 | 80.3 | 98.3 | 87.0 | |
M4 | MLII-F1 | 98.3 | 98.9 | 88.0 | 98.6 | 41.1 | 28.0 | 98.5 | 33.3 | 95.6 | 96.2 | 99.7 | 95.9 |
MLII-S | 83.3 | 99.6 | 95.9 | 90.7 | 77.5 | 7.6 | 86.6 | 13.9 | 93.8 | 71.4 | 97.3 | 81.1 | |
M5 | MLII + V-F1 | 99.0 | 99.1 | 90.0 | 99.0 | 43.2 | 50.5 | 99.4 | 46.6 | 98.4 | 93.9 | 99.5 | 96.1 |
MLII + V-S | 95.3 | 98.3 | 81.5 | 97.0 | 48.4 | 12.8 | 95.3 | 20.2 | 63.5 | 80.5 | 98.9 | 71.0 | |
M6 | MLII + V-F1 | 99.4 | 99.1 | 88.4 | 99.2 | 43.3 | 56.3 | 99.7 | 49.0 | 98.0 | 97.0 | 99.7 | 97.5 |
MLII + V-S | 95.8 | 99.4 | 97.0 | 97.6 | 69.3 | 20.2 | 96.1 | 31.3 | 96.6 | 97.2 | 99.8 | 96.6 |
Acc | Pre | Recall | Spe | F1 | ||
---|---|---|---|---|---|---|
M1 | MLII | 98.81 | 94.37 | 91.85 | 99.06 | 93.03 |
M2 | MLII | 98.53 | 94.04 | 91.33 | 98,88 | 92.62 |
M3 | MLII | 99.58 | 97.02 | 95.89 | 99.02 | 96.44 |
M4 | MLII | 99.59 | 97.17 | 95.97 | 99.04 | 96.56 |
M5 | MLII + V | 99.73 | 98.21 | 97.26 | 99.34 | 97.73 |
M6 | MLII + V | 99.70 | 98.01 | 97.26 | 99.28 | 97.64 |
No. | S | V | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | Recall | Pre | Spe | F1 | ||
M1 | RP | 99.7 | 99.1 | 95.8 | 99.4 | 82.0 | 93.6 | 98.8 | 87.4 | 98.0 | 97.7 | 99.8 | 96.4 |
M2 | HSFC | 99.5 | 99.0 | 95.1 | 99.3 | 79.7 | 90.0 | 99.8 | 84.5 | 95.2 | 96.4 | 99.8 | 95.8 |
M3 | MLII | 99.8 | 99.7 | 97.2 | 99.8 | 88.9 | 92.0 | 99.9 | 90.5 | 98.9 | 99.3 | 99.9 | 99.1 |
M4 | MLII | 99.8 | 99.7 | 97.3 | 99.8 | 89.2 | 92.7 | 99.9 | 90.9 | 98.8 | 99.1 | 99.9 | 99.0 |
M5 | MLII + V | 99.9 | 99.8 | 98.1 | 99.9 | 92.6 | 95.3 | 99.9 | 93.9 | 99.3 | 99.6 | 100 | 99.4 |
M6 | MLII + V | 99.9 | 99.8 | 97.9 | 99.8 | 92.9 | 94.7 | 99.9 | 93.8 | 99.0 | 99.6 | 99.9 | 99.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paolo, Í.F.; Castro, A.R.G. Intra- and Interpatient ECG Heartbeat Classification Based on Multimodal Convolutional Neural Networks with an Adaptive Attention Mechanism. Appl. Sci. 2024, 14, 9307. https://doi.org/10.3390/app14209307
Di Paolo ÍF, Castro ARG. Intra- and Interpatient ECG Heartbeat Classification Based on Multimodal Convolutional Neural Networks with an Adaptive Attention Mechanism. Applied Sciences. 2024; 14(20):9307. https://doi.org/10.3390/app14209307
Chicago/Turabian StyleDi Paolo, Ítalo Flexa, and Adriana Rosa Garcez Castro. 2024. "Intra- and Interpatient ECG Heartbeat Classification Based on Multimodal Convolutional Neural Networks with an Adaptive Attention Mechanism" Applied Sciences 14, no. 20: 9307. https://doi.org/10.3390/app14209307
APA StyleDi Paolo, Í. F., & Castro, A. R. G. (2024). Intra- and Interpatient ECG Heartbeat Classification Based on Multimodal Convolutional Neural Networks with an Adaptive Attention Mechanism. Applied Sciences, 14(20), 9307. https://doi.org/10.3390/app14209307