Antimicrobial Effect of Submicron Complex Oxide Particles CsTeMoO6 under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis and Characterization
2.2. Light Source Characteristics
2.3. Testing the Antimicrobial Effect of Synthesized Materials on Reference Strains
2.4. Statistical Analysis
3. Results
3.1. Characterization of CsTeMoO6
3.2. Antimicrobial Effect of Synthesized Material on Bacteria
3.3. Antimicrobial Effect of Synthesized Material on a Fungi
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Shtilman, M.I. Biodegradation of Polymers. J. Sib. Fed. Univ. Biol. 2015, 8, 113–130. [Google Scholar] [CrossRef]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Plakunov, V.; Gannesen, A.; Mart’Yanov, S.; Zhurina, M. Biocorrosion of synthetic plastics: Degradation mechanisms and methods of protection. Microbiology 2020, 89, 647–659. [Google Scholar] [CrossRef]
- Mamaeva, N.Y.; Velikova, T.D.; Lisitskaia, T.B. Protection of oil and watercolor paints from biodeterioration. Bull. St PbSIT (TU) 2018, 46, 88–91. [Google Scholar]
- Poulsen, S.; Hansen, S.L.; Kofoed, M.V.W.; Schjøth-Eskesen, J. Reducing Biocide Concentrations for Preservation of Water-Based Paints; The Danish Environmental Protection Agency: Odense, Denmark, 2018. [Google Scholar]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef] [PubMed]
- Meleshko, A.; Afinogenova, A.; Afinogenov, G.; Spiridonova, A.; Tolstoy, V. Antibacterial inorganic agents: Efficiency of using multicomponent systems. Russ. J. Infect. Immun. 2020, 10, 639–654. [Google Scholar] [CrossRef]
- Khan, S.T.; Ahamed, M.; Al-Khedhairy, A.; Musarrat, J. Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation. Mater. Lett. 2013, 97, 67–70. [Google Scholar] [CrossRef]
- Mary, A.A.; Ansari, A.T.; Subramanian, R. Sugarcane juice mediated synthesis of copper oxide nanoparticles, characterization and their antibacterial activity. J. King Saud Univ.-Sci. 2019, 31, 1103–1114. [Google Scholar] [CrossRef]
- Svetlakova, A.V.; Mendez, M.S.; Tuchina, E.S.; Khodan, A.N.; Traore, M.; Azouani, R.; Kanaev, A.; Tuchin, V.V. Study of the photocatalytic antimicrobial activity of nanocomposites based on TiO2-Al2O3 under the action of led radiation (405 nm) on staphylococci. Opt. Spectrosc. 2021, 129, 739–740. [Google Scholar] [CrossRef]
- Khataee, A.; Kasiri, M.B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J. Mol. Catal. A Chem. 2010, 328, 8–26. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—From synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Martínez, D.S.; Martínez-De La Cruz, A.; Cuéllar, E.L. Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl. Catal. A Gen. 2011, 398, 179–186. [Google Scholar] [CrossRef]
- da Silva, D.J.; Duran, A.; Cabral, A.D.; Fonseca, F.L.; Bueno, R.F.; Rosa, D.S. Questioning ZnO, Ag, and Ag/ZnO nanoparticles as antimicrobial agents for textiles: Do they guarantee total protection against bacteria and SARS-CoV-2? J. Photochem. Photobiol. B Biol. 2022, 234, 112538. [Google Scholar] [CrossRef] [PubMed]
- Dimapilis, E.A.S.; Hsu, C.-S.; Mendoza, R.M.O.; Lu, M.-C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Murillo-Sierra, J.; Hernández-Ramírez, A.; Hinojosa-Reyes, L.; Guzmán-Mar, J. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem. Eng. J. Adv. 2021, 5, 100070. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Wang, D.; Wang, J.; Jiang, B.; Jiao, S.; Liu, D.; Zeng, Z.; Zhao, C.; Liu, Y. Efficient photocatalytic hydrogen evolution over TiO2-x mesoporous spheres-ZnO nanorods heterojunction. Nanomaterials 2020, 10, 2096. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Ma, J.; Peng, Y.; Wang, A. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J. Alloys Compd. 2019, 783, 898–918. [Google Scholar] [CrossRef]
- Pan, H.; Xie, H.; Chen, G.; Xu, N.; Wang, M.; Fakhri, A. Cr2S3-Co3O4 on polyethylene glycol-chitosan nanocomposites with enhanced ultraviolet light photocatalysis activity, antibacterial and antioxidant studies. Int. J. Biol. Macromol. 2020, 148, 608–614. [Google Scholar] [CrossRef]
- Zhao, M.; Fu, C.; Wang, K.; Zhang, Y.; Xia, Y.; Zhang, Q.; Li, C.; Liu, M.; Zhang, Z.; Wang, W. Photocatalytic degradation of antibacterials using BixOyXz with optimized morphologies and adjusted structures-A review. J. Alloys Compd. 2021, 852, 156698. [Google Scholar] [CrossRef]
- Zakhcarova, O.; Gusev, A. Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: Prospects. Nanotechnol. Russ. 2019, 14, 311–324. [Google Scholar] [CrossRef]
- Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal activity of ZnO nanoparticles—The role of ROS mediated cell injury. Nanotechnology 2011, 22, 105101. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, V.; Smirnova, O.; Shishkin, A.Y.; Fukina, D.; Koryagin, A.; Suleimanov, E. Study of the Antimicrobial Activity of Submicron Particles of Metal Oxides Based on Tungsten Under Light and Dark Exposure Conditions. Nanobiotechnol. Rep. 2022, 17, 235–243. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef] [PubMed]
- la Rosa-García, D.; Susana, C.; Martínez-Torres, P.; Gómez-Cornelio, S.; Corral-Aguado, M.A.; Quintana, P.; Gómez-Ortíz, N.M. Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J. Nanomater. 2018, 2018, 3498527. [Google Scholar] [CrossRef]
- Yu, K.-P.; Huang, Y.-T.; Yang, S.-C. The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant Aspergillus niger spore. J. Hazard. Mater. 2013, 261, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Asanova, A.; Polonskiy, V.; Manukovsky, N.; Khizhnyak, S. Fungistatic activity of engineered nanoparticles. Nanotechnol. Russ. 2018, 13, 277–280. [Google Scholar] [CrossRef]
- Xia, Z.-K.; Ma, Q.-H.; Li, S.-Y.; Zhang, D.-Q.; Cong, L.; Tian, Y.-L.; Yang, R.-Y. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect. 2016, 49, 182–188. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kwon, S.; Jeong, S. Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J. Nanosci. Nanotechnol. 2009, 9, 1098–1102. [Google Scholar] [CrossRef]
- Meraat, R.; Ziabari, A.A.; Issazadeh, K.; Shadan, N.; Jalali, K.M. Synthesis and characterization of the antibacterial activity of zinc oxide nanoparticles against Salmonella typhi. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 601–608. [Google Scholar] [CrossRef]
- Sichel, C.; De Cara, M.; Tello, J.; Blanco, J.; Fernández-Ibáñez, P. Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl. Catal. B Environ. 2007, 74, 152–160. [Google Scholar] [CrossRef]
- Ye, S.-Y.; Fan, M.-L.; Song, X.-L.; Luo, S.-C. Enhanced photocatalytic disinfection of P. expansum in cold storage using a TiO2/ACF film. Int. J. Food Microbiol. 2010, 136, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Fukina, D.G.; Suleimanov, E.V.; Boryakov, A.V.; Zubkov, S.Y.; Koryagin, A.V.; Volkova, N.S.; Gorshkov, A.P. Structure analysis and electronic properties of ATe4+ 0.5Te6+ 1.5-xM6+ xO6 (A = Rb, Cs, M6+ = Mo, W) solid solutions with β-pyrochlore structure. J. Solid State Chem. 2021, 293, 121787. [Google Scholar] [CrossRef]
- Fukina, D.G.; Koryagin, A.V.; Koroleva, A.V.; Zhizhin, E.V.; Suleimanov, E.V.; Volkova, N.S.; Kirillova, N.I. The role of surface and electronic structure features of the CsTeMoO6 β-pyrochlore compound during the photooxidation dyes process. J. Solid State Chem. 2022, 308, 122939. [Google Scholar] [CrossRef]
- Armstrong, D.A.; Huie, R.E.; Lymar, S.; Koppenol, W.H.; Merényi, G.; Neta, P.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals. BioInorganic React. Mech. 2013, 9, 59–61. [Google Scholar] [CrossRef]
- Fukina, D.G.; Koryagin, A.V.; Koroleva, A.V.; Zhizhin, E.V.; Suleimanov, E.V.; Kirillova, N.I. Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. J. Solid State Chem. 2021, 300, 122235. [Google Scholar] [CrossRef]
- Fukina, D.G.; Koryagin, A.V.; Volkova, N.S.; Suleimanov, E.V.; Kuzmichev, V.V.; Mitin, A.V. Features of the electronic structure and photocatalytic properties under visible light irradiation for RbTe1.5W0.5O6 with β-pyrochlore structure. Solid State Sci. 2022, 126, 106858. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Stanić, V.; Tanasković, S.B. Antibacterial activity of metal oxide nanoparticles. In Nanotoxicity; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–274. [Google Scholar]
- Hammoudi Halat, D.; Younes, S.; Mourad, N.; Rahal, M. Allylamines, benzylamines, and fungal cell permeability: A review of mechanistic effects and usefulness against fungal pathogens. Membranes 2022, 12, 1171. [Google Scholar] [CrossRef]
- Feofilova, E. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 2010, 79, 711–720. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Bach, H. Mechanisms of Antifungal Properties of Metal Nanoparticles. Nanomaterials 2022, 12, 4470. [Google Scholar] [CrossRef] [PubMed]
- Kamzolkina, O.V.; Dunaevsky, Y.E. Biology of the Fungal Cell; Partnership of Scientific Publications KMK: Moscow, Russia, 2017; 239p. [Google Scholar]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Blanot, D.; De Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Pishchik, V.N.; Vorob’ev, N.I.; Provorov, N.A.; Khomyakov, Y.V. Mechanisms of Plant and Microbial Adaptation to Heavy Metalsin Plant–Microbial Systems. Microbiology 2016, 85, 231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenycheva, L.; Smirnov, V.; Smirnova, O.; Shishkin, A.; Anikina, N.; Fukina, D.; Koryagin, A.; Suleimanov, E. Antimicrobial Effect of Submicron Complex Oxide Particles CsTeMoO6 under Visible Light. Appl. Sci. 2024, 14, 889. https://doi.org/10.3390/app14020889
Semenycheva L, Smirnov V, Smirnova O, Shishkin A, Anikina N, Fukina D, Koryagin A, Suleimanov E. Antimicrobial Effect of Submicron Complex Oxide Particles CsTeMoO6 under Visible Light. Applied Sciences. 2024; 14(2):889. https://doi.org/10.3390/app14020889
Chicago/Turabian StyleSemenycheva, Lyudmila, Vasiliy Smirnov, Olga Smirnova, Andrey Shishkin, Nadezhda Anikina, Diana Fukina, Andrey Koryagin, and Evgeny Suleimanov. 2024. "Antimicrobial Effect of Submicron Complex Oxide Particles CsTeMoO6 under Visible Light" Applied Sciences 14, no. 2: 889. https://doi.org/10.3390/app14020889
APA StyleSemenycheva, L., Smirnov, V., Smirnova, O., Shishkin, A., Anikina, N., Fukina, D., Koryagin, A., & Suleimanov, E. (2024). Antimicrobial Effect of Submicron Complex Oxide Particles CsTeMoO6 under Visible Light. Applied Sciences, 14(2), 889. https://doi.org/10.3390/app14020889