Enhancing Unmanned Marine Vehicle Security: A Periodic Watermark-Based Detection of Replay Attacks
Abstract
:1. Introduction
- (1)
- (2)
- A novel periodic watermarking-compensation mechanism is constructed based on a Gaussian signal, contrasting with binary watermark signals employed in [32]. Comparatively, this mechanism can effectively enhance the detection rate of replay attacks.
2. Problem Formulation and Preliminaries
2.1. UMVs System Modeling
Algorithm 1 Kalman Filter Utilized in T-S UMVs Model |
|
2.2. Linear Quadratic Gaussian Controller
2.3. Replay Attack Model
3. A Periodic Watermark-Based Detection of Replay Attacks
3.1. Periodic Watermarking Detection Mechanism
3.2. Construction of Periodic Watermark Signal
3.3. Construction of Periodic Compensation Signal
3.4. Detection of Replay Attacks
3.5. Analysis of System Performance Degradation
4. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Yang, X.; Hao, L.; Li, T.; Chen, C.L.P. Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults. Appl. Sci. 2024, 12, 920. [Google Scholar] [CrossRef]
- Li, W.; Zhou, H.; Zhang, J. Quasi-Infinite Horizon Model Predictive Control with Fixed-Time Disturbance Observer for Underactuated Surface Vessel Path Following. Appl. Sci. 2024, 12, 967. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, T.; Liu, S. A Review of Path Planning Methods for Marine Autonomous Surface Vehicles. Appl. Sci. 2024, 12, 833. [Google Scholar] [CrossRef]
- Li, Z.; Lei, K. Robust Fixed-Time Fault-Tolerant Control for USV with Prescribed Tracking Performance. Appl. Sci. 2024, 12, 799. [Google Scholar] [CrossRef]
- Pandey, P.K.; Kansal, V.; Swaroop, A. PKI-SMR: PKI based secure multipath routing for unmanned military vehicles (UMV) in VANETs. Wirel. Netw. 2024, 30, 595–615. [Google Scholar] [CrossRef]
- Zhang, P.; Li, H.; Wang, Y.; Zhao, X. Optimal search path planning of UUV in battlefield ambush scene. Def. Technol. 2024, 19, 101–111. [Google Scholar]
- Wang, H.; Wang, T.; Lv, H.; Liu, S. An adjustable pendulum mechanism for in-situ wave energy harvesting in an unmanned marine vehicle. Ocean Eng. 2024, 297, 117116. [Google Scholar] [CrossRef]
- Song, W.; Tong, S. Event-triggered fuzzy finite-time reliable control for dynamic positioning of nonlinear unmanned marine vehicles. Ocean Eng. 2022, 266, 113139. [Google Scholar] [CrossRef]
- Wang, W.; Liang, H.; Pan, Y.; Li, T. Prescribed Performance Adaptive Fuzzy Containment Control for Nonlinear Multiagent Systems Using Disturbance Observer. IEEE Trans. Cybern. 2020, 50, 3879–3891. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, H.; Li, H.; Li, T. Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean Eng. 2020, 215, 107882. [Google Scholar] [CrossRef]
- Chwa, D. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Trans. Control Syst. Technol. 2011, 19, 1357–1370. [Google Scholar] [CrossRef]
- Ge, S.S.; Zhang, J. Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Trans. Neural Netw. 2003, 14, 900–918. [Google Scholar] [PubMed]
- Liu, M.; Zhao, C.; Xia, J.; Deng, R.; Cheng, P.; Chen, J. PDDL: Proactive Distributed Detection and Localization against Stealthy Deception Attacks in DC Microgrids. IEEE Trans. Smart Grid 2023, 14, 714–731. [Google Scholar] [CrossRef]
- Alfaro-Cid, E.; McGookin, E.W.; Murray-Smith, D.J.; Fossen, T.I. Genetic Programming for the Automatic Design of Controllers for a Surface Ship. IEEE Trans. Intell. Transp. Syst. 2008, 9, 311–321. [Google Scholar] [CrossRef]
- Liu, Q.; Long, Y.; Li, T.; Chen, C.L.P. Attack-resilient fault detection for interconnected systems under DoS attack. ISA Trans. 2024, 148, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ye, Z.; Feng, G.; Li, H. Intelligent Event-Based Fuzzy Dynamic Positioning Control of Nonlinear Unmanned Marine Vehicles Under DoS Attack. IEEE Trans. Cybern. 2022, 52, 13486–13499. [Google Scholar] [CrossRef]
- Fei, Z.; Wang, X.; Wang, Z. Event-Based Fault Detection for Unmanned Surface Vehicles Subject to Denial-of-Service Attacks. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3326–3336. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, P.; Wu, J.; Chen, J. Secure State Estimation Using Hybrid Homomorphic Encryption Scheme. IEEE Trans. Control Syst. Technol. 2021, 29, 1704–1720. [Google Scholar] [CrossRef]
- Steiner, J.; Neuman, C.; Schiller, J. Kerberos: An authentication service for open networks. In Proceedings of the USENIX Annual Tech Conference, Dallas, TX, USA, 9–12 February 1988. [Google Scholar]
- Greene, K.; Rodgers, D.; Dykhuizen, H.; Niyaz, Q.; Shamaileh, K.A.; Devabhaktuni, V. A Defense Mechanism Against Replay Attack in Remote Keyless Entry Systems Using Timestamping and XOR Logic. IEEE Consum. Electron. Mag. 2021, 10, 101–108. [Google Scholar] [CrossRef]
- Farha, F.; Ning, H.; Yang, S.; Xu, J.; Zhang, W.; Choo, K.-K.R. Timestamp Scheme to Mitigate Replay Attacks in Secure ZigBee Networks. IEEE Trans. Mob. Comput. 2022, 21, 342–351. [Google Scholar] [CrossRef]
- Xiao, M.; Song, W.; Yang, K.; OuYang, R.; Zhao, H. Formal Analysis of the Security Protocol with Timestamp Using SPIN. Comput. Intell. Neurosci. 2022, 2022, 2420590. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chu, Z.; Ma, L.; Wang, G.; Dai, W. Joint Watermarking-Based Replay Attack Detection for Industrial Process Operation Optimization Cyber-Physical Systems. IEEE Trans. Ind. Inform. 2023, 19, 8910–8922. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, M.; Fang, C.; Deng, R.; Cheng, P. Detection-Performance Tradeoff for Watermarking in Industrial Control Systems. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2780–2793. [Google Scholar] [CrossRef]
- Du, D.; Zhang, C.; Li, X.; Fei, M.; Zhou, H. Attack Detection for Networked Control Systems Using Event-Triggered Dynamic Watermarking. IEEE Trans. Ind. Inform. 2023, 19, 351–361. [Google Scholar] [CrossRef]
- Liu, H.; Mo, Y.; Yan, J.; Xie, L.; Johansson, K.H. An Online Approach to Physical Watermark Design. IEEE Trans. Autom. Control 2020, 65, 3895–3902. [Google Scholar] [CrossRef]
- Ma, L.; Chu, Z.; Yang, C.; Wang, G.; Dai, W. Recursive Watermarking-Based Transient Covert Attack Detection for the Industrial CPS. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1709–1719. [Google Scholar] [CrossRef]
- Naha, A.; Teixeira, A.M.H.; Ahlén, A.; Dey, S. Quickest detection of deception attacks on cyber–physical systems with a parsimonious watermarking policy. Automatica 2023, 155, 111147. [Google Scholar] [CrossRef]
- Song, Z.; Skuric, A.; Ji, K. A Recursive Watermark Method for Hard Real-Time Industrial Control System Cyber-Resilience Enhancement. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1030–1043. [Google Scholar] [CrossRef]
- Bian, G.; Long, Y.; Li, T.; Park, J.H.; Chen, C.L.P. Watermark-Based Replay Attack Detection for Unmanned Marine Vehicles. IEEE Trans. Intell. Veh. 2024. early access. [Google Scholar] [CrossRef]
- Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting Integrity Attacks on SCADA Systems. IEEE Trans. Control Syst. Technol. 2014, 22, 1396–1407. [Google Scholar] [CrossRef]
- Fang, C.; Qi, Y.; Cheng, P.; Zheng, W.X. Optimal periodic watermarking schedule for replay attack detection in cyber–physical systems. Automatica 2020, 112, 108698. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Han, Q.-L.; Fei, M.-R.; Peng, C. Network-Based T–S Fuzzy Dynamic Positioning Controller Design for Unmanned Marine Vehicles. IEEE Trans. Cybern. 2018, 48, 2750–2763. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, J.; Wang, D.; Han, Q.-L. An Overview of Recent Advances in Coordinated Control of Multiple Autonomous Surface Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 732–745. [Google Scholar] [CrossRef]
- Hao, L.-Y.; Zhang, H.; Li, T.S.; Lin, B.; Chen, C.L.P. Fault Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on T-S Fuzzy Model with Unknown Membership Functions. IEEE Trans. Veh. Technol. 2021, 70, 146–157. [Google Scholar] [CrossRef]
- Mo, Y.; Weerakkody, S.; Sinopoli, B. Physical Authentication of Control Systems: Designing Watermarked Control Inputs to Detect Counterfeit Sensor Outputs. IEEE Control Syst. Mag. 2015, 35, 93–109. [Google Scholar]
- Zhao, S.; Li, Q.; Cao, H. Improved Smooth Watermarking Methods for Detecting Replay Attacks in Process Control Systems. Electronics 2023, 12, 3812. [Google Scholar] [CrossRef]
Detection Method | Timestamp | Watermark | Vulnerable | Precise | Cost-Effective |
---|---|---|---|---|---|
Ref. [19] | ✓ | ✓ | |||
Ref. [20] | ✓ | ✓ | |||
Ref. [25] | ✓ | ✓ | |||
Ref. [26] | ✓ | ✓ | |||
Ref. [27] | ✓ | ✓ | |||
Ref. [27] | ✓ | ✓ | |||
Ref. [29] | ✓ | ✓ | |||
Proposed Method | ✓ | ✓ | ✓ |
T | of Continuous Replay Attacks | of Discontinuous Replay Attacks | |
---|---|---|---|
6 | 0.5763 | 92.5% | 87.3% |
8 | 0.5763 | 92.7% | 88.4% |
10 | 0.5763 | 93.8% | 90.1% |
12 | 0.5763 | 93.3% | 89.2% |
14 | 0.5763 | 89.6% | 87.5% |
Method in This Paper | 24 | ||||
Method in Bian et al. [30] | 30 | ||||
Method in Zhao et al. [37] | 55 | ||||
Method in Fang et al. [32] | 93 | ||||
Method in Mo et al. [31] | 167 | ||||
Method in Mo et al. [36] | 175 |
Method in This Paper | 80 | ||||
Method in Bian et al. [30] | 80 | ||||
Method in Zhao et al. [37] | 80 | ||||
Method in Fang et al. [32] | 80 | ||||
Method in Mo et al. [31] | 80 | ||||
Method in Mo et al. [36] | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, G.; Gao, X. Enhancing Unmanned Marine Vehicle Security: A Periodic Watermark-Based Detection of Replay Attacks. Appl. Sci. 2024, 14, 8298. https://doi.org/10.3390/app14188298
Bian G, Gao X. Enhancing Unmanned Marine Vehicle Security: A Periodic Watermark-Based Detection of Replay Attacks. Applied Sciences. 2024; 14(18):8298. https://doi.org/10.3390/app14188298
Chicago/Turabian StyleBian, Guangrui, and Xiaoyang Gao. 2024. "Enhancing Unmanned Marine Vehicle Security: A Periodic Watermark-Based Detection of Replay Attacks" Applied Sciences 14, no. 18: 8298. https://doi.org/10.3390/app14188298
APA StyleBian, G., & Gao, X. (2024). Enhancing Unmanned Marine Vehicle Security: A Periodic Watermark-Based Detection of Replay Attacks. Applied Sciences, 14(18), 8298. https://doi.org/10.3390/app14188298