A Machine Learning Model for Predicting Critical Minimum Foot Clearance (MFC) Heights
Abstract
:Featured Application
Abstract
1. Introduction
2. Data Collection
2.1. Participants and Protocols
2.2. Data Exploration
2.3. Model Selection and Algorithm Design
Data Splitting, Hyperparameter Tuning, and Optimizing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, S.; Muhammad, T. Prevalence and risk factors of fall-related injury among older adults in India: Evidence from a cross-sectional observational study. BMC Public Health 2022, 22, 550. [Google Scholar] [CrossRef] [PubMed]
- Prudham, D.; Evans, J.G. Factors associated with falls in the elderly: A community study. Age Ageing 1981, 10, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.E.; De Silva, D.A.; Chang, H.M.; Yao, J.; Matchar, D.B.; Young, S.H.Y.; See, S.J.; Lim, G.H.; Wong, T.H.; Venketasubramanian, N. Post-stroke patients with moderate function have the greatest risk of falls: A national cohort study. BMC Geriatr. 2019, 19, 373. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Canning, C.G.; Hausdorff, J.M.; Lord, S.; Rochester, L. Falls in Parkinson’s disease: A complex and evolving picture. Mov. Disord. 2017, 32, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Pressley, J.C.; Louis, E.D.; Tang, M.X.; Cote, L.; Cohen, P.D.; Glied, S.; Mayeux, R. The impact of comorbid disease and injuries on resource use and expenditures in parkinsonism. Neurology 2003, 60, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, D.; Gervasoni, E.; Pupillo, E.; Bianchi, E.; Aprile, I.; Imbimbo, I.; Russo, R.; Cruciani, A.; Turolla, A.; Jonsdottir, J.; et al. Educational and Exercise Intervention to Prevent Falls and Improve Participation in Subjects With Neurological Conditions: The NEUROFALL Randomized Controlled Trial. Front. Neurol. 2019, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Hornbrook, M.C.; Stevens, V.J.; Wingfield, D.J.; Hollis, J.F.; Greenlick, M.R.; Ory, M.G. Preventing falls among community-dwelling older persons: Results from a randomized trial. Gerontologist 1994, 34, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Alemdaroğlu, E.; Uçan, H.; Topçuoğlu, A.M.; Sivas, F. In-hospital predictors of falls in community-dwelling individuals after stroke in the first 6 months after a baseline evaluation: A prospective cohort study. Arch. Phys. Med. Rehabil. 2012, 93, 2244–2250. [Google Scholar] [CrossRef]
- Mackintosh, S.F.; Hill, K.D.; Dodd, K.J.; Goldie, P.A.; Culham, E.G. Balance score and a history of falls in hospital predict recurrent falls in the 6 months following stroke rehabilitation. Arch. Phys. Med. Rehabil. 2006, 87, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Forster, A.; Young, J. Incidence and consequences of falls due to stroke: A systematic inquiry. BMJ 1995, 311, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Grimbergen, Y.A.; Cramer, M.; Willemsen, M.; Zwinderman, A.H. Prospective assessment of falls in Parkinson’s disease. J. Neurol. 2001, 248, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S.; Sherrington, C.; Canning, C.G.; Fung, V.S.C.; Close, J.C.T.; Lord, S.R. The relative contribution of physical and cognitive fall risk factors in people with Parkinson’s disease: A large prospective cohort study. Neurorehabil. Neural Repair 2014, 28, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed]
- Hendrie, D.; Hall, S.E.; Arena, G.; Legge, M. Health system costs of falls of older adults in Western Australia. Aust. Health Rev. 2004, 28, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Stolze, H.; Klebe, S.; Zechlin, C.; Baecker, C.; Friege, L.; Deuschl, G. Falls in frequent neurological diseases—Prevalence, risk factors and aetiology. J. Neurol. 2004, 251, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.P.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef]
- Blake, A.J.; Morgan, K.; Bendall, M.J.; Dallosso, H.; Ebrahim, S.B.; Arie, T.H.; Fentem, P.H.; Bassey, E.J. Falls by elderly people at home: Prevalence and associated factors. Age Ageing 1988, 17, 365–372. [Google Scholar] [CrossRef]
- Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture 2007, 25, 191–198. [Google Scholar] [CrossRef]
- Delfi, G.; Al Bochi, A.; Dutta, T. A scoping review on minimum foot clearance measurement: Sensing modalities. Int. J. Environ. Res. Public Health 2021, 18, 10848. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.W.; Lloyd, J.D.; Lee, W.E. The effects of everyday concurrent tasks on overground minimum toe clearance and gait parameters. Gait Posture 2010, 32, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Foot trajectory in human gait: A precise and multifactorial motor control task. Phys. Ther. 1992, 72, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Smeesters, C.; Hayes, W.C.; McMahon, T.A. Disturbance type and gait speed affect fall direction and impact location. J. Biomech. 2001, 34, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Moosabhoy, M.A.; Gard, S.A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R. A shoe-insole to improve ankle joint mechanics for injury prevention among older adults. Ergonomics 2021, 64, 1271–1280. [Google Scholar] [CrossRef]
- Begg, R.K.; Tirosh, O.; Said, C.M.; Sparrow, W.A.; Steinberg, N.; Levinger, P.; Galea, M.P. Gait training with real-time augmented toe-ground clearance information decreases tripping risk in older adults and a person with chronic stroke. Front. Hum. Neurosci. 2014, 8, 243. [Google Scholar] [CrossRef]
- Sarashina, E.; Mizukami, K.; Yoshizawa, Y.; Sakurai, J.; Tsuji, A.; Begg, R. Feasibility of Pilates for late-stage frail older adults to minimize falls and enhance cognitive functions. Appl. Sci. 2022, 12, 6716. [Google Scholar] [CrossRef]
- Arami, A.; Raymond, N.S.; Aminian, K. An accurate wearable foot clearance estimation system: Toward a real-time measurement system. IEEE Sens. J. 2017, 17, 2542–2549. [Google Scholar] [CrossRef]
- Santhiranayagam, B.K.; Lai, D.T.H.; Begg, R.K.; Palaniswami, M. Estimation of end point foot clearance points from inertial sensor data. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6503–6506. [Google Scholar] [CrossRef]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Mariani, B.; Rochat, S.; Büla, C.J.; Aminian, K. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed. Eng. 2012, 59, 3162–3168. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, N.; Ogihara, N. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait Posture 2016, 45, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Benoussaad, M.; Sijobert, B.; Mombaur, K.; Coste, C.A. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors 2016, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.T.H.; Charry, E.; Begg, R.; Palaniswami, M. A prototype wireless inertial-sensing device for measuring toe clearance. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4899–4902. [Google Scholar] [CrossRef]
- Asogwa, C.O.; Nagano, H.; Wang, K.; Begg, R. Using deep learning to predict minimum foot–ground clearance event from toe-off kinematics. Sensors 2022, 22, 6960. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable sensor-based real-time gait detection: A systematic review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Bae, M.; Lee, K.B.; Hong, S.G. Gait event detection algorithm based on smart insoles. ETRI J. 2020, 42, 46–53. [Google Scholar] [CrossRef]
- Köse, A.; Cereatti, A.; Della Croce, U. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. J. NeuroEng. Rehabil. 2012, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Santhiranayagam, B.K.; Lai, D.T.; Sparrow, W.A.; Begg, R.K. A machine learning approach to estimate Minimum Toe Clearance using Inertial Measurement Units. J. Biomech. 2015, 48, 4309–4316. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Fujie, M.G.; Sugano, S. Prediction algorithm of parameters of toe clearance in the swing phase. Appl. Bionics Biomech. 2019, 10, 4502719. [Google Scholar] [CrossRef]
- Guimarães, V.; Sousa, I.; Correia, M.V. A deep learning approach for foot trajectory estimation in gait analysis using inertial sensors. Sensors 2021, 21, 7517. [Google Scholar] [CrossRef]
- Lee, S.S.; Choi, S.T.; Choi, S.I. Classification of gait type based on deep learning using various sensors with smart insole. Sensor 2019, 19, 1757. [Google Scholar] [CrossRef] [PubMed]
- Mashal, I.; Alsaryrah, O.; Chung, T.Y. Testing and evaluating recommendation algorithms in the internet of things. J. Ambient Intell. Humaniz. Comput. 2016, 7, 889–900. [Google Scholar] [CrossRef]
- Hasan, S.M.S.; Siddiquee, M.R.; Atri, R. Prediction of gait intention from pre-movement EEG signals: A feasibility study. J. NeuroEng. Rehabil. 2020, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, A.; Hasegawa, Y.; Eguchi, K.; Sankai, Y. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Reberšek, P.; De Rossi, S.M.M.; Donati, M.; Podobnik, J.; Beravs, T.; Lenzi, T.; Vitiello, N.; Carrozza, M.C.; Munih, M. Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 2013, 35, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- XGBoost Documentation. Available online: https://xgboost.readthedocs.io/en/latest/tutorials/model.html (accessed on 30 August 2023).
- Bohannon, R.W.; Wang, Y.C. Four-Meter Gait Speed: Normative Values and Reliability Determined for Adults Participating in the NIH Toolbox Study. Arch. Phys. Med. Rehabil. 2019, 100, 509–513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagano, H. Gait Biomechanics for Fall Prevention among Older Adults. Appl. Sci. 2022, 12, 6660. [Google Scholar] [CrossRef]
- Nagano, H.; Said, C.M.; James, L.; Sparrow, W.A.; Begg, R. Biomechanical correlates of falls risk in gait impaired stroke survivors. Front. Physiol. 2022, 13, 833417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Bochi, A.; Delfi, G.; Dutta, T. A scoping review on minimum foot clearance: An exploration of level-ground clearance in individuals with abnormal gait. Int. J. Environ. Res. Public Health 2021, 18, 10289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seaborn. Available online: https://seaborn.pydata.org (accessed on 15 October 2022).
- Derlatka, M. Modified kNN algorithm for improved recognition accuracy of biometrics system based on gait. In IFIP International Conference on Computer Information Systems and Industrial Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 59–66. [Google Scholar]
- Gupta, A.; Jadhav, A.; Jadhav, S.; Thengade, A. Human gait analysis based on decision tree, random forest and KNN algorithms. In Applied Computer Vision and Image Processing; Springer: Singapore, 2020; pp. 283–289. [Google Scholar]
- Rattanasak, A.; Uthansakul, P.; Uthansakul, M.; Jumphoo, T.; Phapatanaburi, K.; Sindhupakorn, B.; Rooppakhun, S. Real-Time Gait Phase Detection Using Wearable Sensors for Transtibial Prosthesis Based on a kNN Algorithm. Sensors 2022, 22, 4242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, J.G.; Li, Y.; Liu, H.Q.; Lin, S.; Pang, L.; Sun, G.; Song, Y.Z. Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms. Math. Biosci. Eng. 2023, 20, 14578–14595. [Google Scholar] [CrossRef] [PubMed]
- Halim, N. Stochastic recognition of human daily activities via hybrid descriptors and random forest using wearable sensors. Array 2022, 15, 100190. [Google Scholar] [CrossRef]
- Gao, J.; Ma, C.; Wu, D.; Xu, X.; Wang, S.; Yao, J. Recognition of human motion intentions based on Bayesian-optimized XGBOOST algorithm. J. Sens. 2022, 1–15. [Google Scholar] [CrossRef]
- Kranzinger, C.; Bernhart, S.; Kremser, W.; Venek, V.; Rieser, H.; Mayr, S.; Kranzinger, S. Classification of human motion data based on inertial measurement units in sports: A scoping review. Appl. Sci. 2023, 13, 8684. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson., K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kuhn, M. Futility Analysis in the Cross-Validation of Machine Learning Models. arXiv 2014, arXiv:1405.6974. [Google Scholar]
- Fisher, A.; Rudin, C.; Dominici, F. All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. arXiv 2018, arXiv:1801.01489. [Google Scholar]
- Kuhn, M.; Johnson, K. Measuring Performance in Classification Models. In Applied Predictive Modeling; Springer: New York, NY, USA, 2013; pp. 247–273. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.M.; Barrett, R.S. Swing phase mechanics of healthy young and elderly men. Hum. Mov. Sci. 2001, 20, 427–446. [Google Scholar] [CrossRef]
- Kubota, S.; Kadone, H.; Shimizu, Y.; Koda, M.; Noguchi, H.; Takahashi, H.; Watanabe, H.; Hada, Y.; Sankai, Y.; Yamazaki, M. Development of a new ankle joint hybrid assistive limb. Medicina 2022, 58, 395. [Google Scholar] [CrossRef]
- Sankai, Y. HAL: Hybrid Assistive Limb Based on Cybernics. In Robotics Research. Springer Tracts in Advanced Robotics; Kaneko, M., Nakamura, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 66. [Google Scholar]
- Soma, Y.; Kubota, S.; Kadone, H.; Shimizu, Y.; Takahashi, H.; Hada, Y.; Koda, M.; Sankai, Y.; Yamazaki, M. Hybrid Assistive Limb Functional Treatment for a Patient with Chronic Incomplete Cervical Spinal Cord Injury. Int. Med. Case Rep. J. 2021, 14, 413–420. [Google Scholar] [CrossRef]
- Mataki, Y.; Kamada, H.; Mutsuzaki, H.; Shimizu, Y.; Takeuchi, R.; Mizukami, M.; Yoshikawa, K.; Takahashi, K.; Matsuda, M.; Iwasaki, N.; et al. Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: A case report. BMC Res. Notes 2018, 11, 201. [Google Scholar] [CrossRef] [PubMed]
R1 | R2 | R3 |
---|---|---|
Below average | Safe | Well-above safety limit |
MFC < 1.5 cm | 1.5 cm < MFC < 2 cm | MFC > 2.0 cm |
Category | Average Value of Corresponding Feature Variables | Total | ||||||
---|---|---|---|---|---|---|---|---|
AccX (m/s2) | AccY (m/s2) | AccZ (m/s2) | GyroX (rad/s) | GyroY (rad/s) | GyroZ (rad/s) | |||
R1 | Mean | 10.54 | −3.85 | 4.18 | 0.02 | −1.64 | 0.55 | 7235 |
STD | 5.92 | 5.81 | 4.79 | 2.75 | 1.91 | 2.11 | ||
R2 | Mean | 9.89 | −2.00 | 0.16 | 0.09 | −0.69 | 0.10 | 3738 |
STD | 4.40 | 5.34 | 4.08 | 1.51 | 1.12 | 1.84 | ||
R3 | Mean | 8.43 | −0.23 | 8.09 | 2.34 | −3.22 | 1.83 | 7517 |
STD | 7.06 | 3.94 | 7.28 | 2.00 | 2.10 | 2.01 |
Algorithm | Accuracy Score (%) | Weighted Average (%) | Model Training Time |
---|---|---|---|
KNN | 84 | 83 | 0.39 s at K = 12 |
Random Forest | 86 | 86 | 13.98 s, 800 estimators, and max depth = 8 |
XGBoost | 75 | 74 | 170.98 s (n_estimators = 2, max_depth = 2, learning_rate = 1, objective = ‘multi: softprob’, num_round = 25) |
(a) | ||||||
Training Features | KNN | Random Forest | XGBoost | |||
(% Accuracy) | (% Accuracy) | (% Accuracy) | ||||
Acceleration (X, Y, Z) | 65 | 67 | 60 | |||
Gyro meter (X, Y, Z) | 74 | 75 | 64 | |||
Combined Acceleration and Gyro meter (X, Y, Z) | 84 | 86 | 75 | |||
(b) | ||||||
ML Algorithm | Percentage Accuracies of Individual Features for Predicting MFC Height | |||||
AccX (%) | AccY (%) | AccZ (%) | GyroX (%) | GyroY (%) | GyroZ (%) | |
KNN | 41 | 45 | 55 | 56 | 51 | 55 |
Random Forest | 40 | 43 | 51 | 51 | 46 | 48 |
XGBoost | 46 | 53 | 56 | 58 | 56 | 60 |
Random Forest | KNN | XGBoost | |
---|---|---|---|
R1 | 0.87 | 0.84 | 0.73 |
R2 | 0.83 | 0.71 | 0.73 |
R3 | 0.97 | 0.92 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagano, H.; Prokofieva, M.; Asogwa, C.O.; Sarashina, E.; Begg, R. A Machine Learning Model for Predicting Critical Minimum Foot Clearance (MFC) Heights. Appl. Sci. 2024, 14, 6705. https://doi.org/10.3390/app14156705
Nagano H, Prokofieva M, Asogwa CO, Sarashina E, Begg R. A Machine Learning Model for Predicting Critical Minimum Foot Clearance (MFC) Heights. Applied Sciences. 2024; 14(15):6705. https://doi.org/10.3390/app14156705
Chicago/Turabian StyleNagano, Hanatsu, Maria Prokofieva, Clement Ogugua Asogwa, Eri Sarashina, and Rezaul Begg. 2024. "A Machine Learning Model for Predicting Critical Minimum Foot Clearance (MFC) Heights" Applied Sciences 14, no. 15: 6705. https://doi.org/10.3390/app14156705
APA StyleNagano, H., Prokofieva, M., Asogwa, C. O., Sarashina, E., & Begg, R. (2024). A Machine Learning Model for Predicting Critical Minimum Foot Clearance (MFC) Heights. Applied Sciences, 14(15), 6705. https://doi.org/10.3390/app14156705