Evaluating the Potential of Double-Muscled Angus Sires to Produce Progeny from Dairy Cows to Meet Premium Beef Brand Specifications
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Challenge with the Male Progeny of Dairy Cows
The Use of Sex-Selected Semen to Reduce Male Dairy Cow Numbers
3. Producing High-Quality Beef—The Certified Angus Beef® Brand
3.1. The Defining Phenotypic Characteristics of Angus Cattle
3.2. The Carcass of Angus Cattle
4. The Use of Myostatin Genetics to Increase Meat Yield in Cattle
4.1. The Myostatin F94L Amino Acid Substitution
4.2. The MSTN c.821 Deletion
4.3. Adverse Effects of MSTN nt821(del11) on Calving Ease
5. The Establishment of Integrated Beef and Dairy Systems
The Use of Myostatin Genetics to Improve Meat Traits in Beef-Sired Dairy-Cross Calves
6. Climate Benefits of Improved Beef × Dairy Systems
7. The Potential for Further Beef × Dairy Development in New Zealand and Globally
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazzetto, A.M.; Falconer, S.; Ledgard, S. Mapping the carbon footprint of milk production from cattle: A systematic review. J. Dairy Sci. 2022, 105, 9713–9725. [Google Scholar] [CrossRef] [PubMed]
- Creutzinger, K.; Pempek, J.; Habing, G.; Proudfoot, K.; Locke, S.; Wilson, D.; Renaud, D. Perspectives on the management of surplus dairy calves in the United States and Canada. Front. Vet. Sci. 2021, 8, 661453. [Google Scholar] [CrossRef] [PubMed]
- NZ Dairy Statistics 2022–2023, Livestock Improvement Corporation Limited & DairyNZ Limited. Available online: https://www.dairynz.co.nz (accessed on 10 May 2024).
- Hickson, R.E.; Zhang, I.L.; McNaughton, L.R. Brief communication: Birth weight of calves born to dairy cows in New Zealand. Proc. N. Z. Soc. Anim. Prod. 2015, 75, 257–259. [Google Scholar]
- Norman, H.D.; Hutchison, J.L.; Miller, R.H. Use of sexed semen and its effect on conception rate, calf sex, dystocia, and stillbirth of Holsteins in the United States. J. Dairy Sci. 2010, 93, 3880–3890. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.A.; Butler, S.T. Review: Applications and benefits of sexed semen in dairy and beef herds. Animal 2018, 12, s97–s103. [Google Scholar] [CrossRef] [PubMed]
- USDA. Certified Beef Programs. Agricultural Marketing Service, United States Department of Agriculture, Washington, DC. 2024. Available online: https://www.ams.usda.gov/grades-standards/certified-beef-programs (accessed on 21 July 2024).
- USDA. Schedule GLA—November 1996 (Revised 2016) USDA Specification for Characteristics of Cattle Eligible for Approved Beef Programs Claiming Angus Influence. 2016. Available online: https://www.ams.usda.gov/sites/default/files/media/LS-SCH-GLA.pdf (accessed on 1 March 2024).
- Siebert, J.W.; Jones, C.A. Case study on building the Certified Angus Beef® brand. Int. Food Agribus. Manag. Rev. 2013, 16, 195–208. [Google Scholar]
- Olson, K. CAB’s Impact on Beef Quality Standards. J. Anim. Sci. 2008, 86, 367–375. [Google Scholar]
- Albertí, P.; Panea, B.; Sañudo, C.; Olleta, J.L.; Ripoll, G.; Ertbjerg, P.M.; Christensen, P.M.; Gigli, S.; Failla, S.; Concetti, S.; et al. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livestock Sci. 2008, 114, 19–30. [Google Scholar] [CrossRef]
- Klungland, H.; Våge, D.I.; Gomez-Raya, L.; Adalsteinsson, S.; Lien, S. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm. Genome 1995, 9, 636–639. [Google Scholar] [CrossRef]
- Joerg, H.; Fries, H.R.; Meijerink, E.; Stranzinger, G.F. Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm. Genome 1996, 4, 317–318. [Google Scholar] [CrossRef]
- Rouzaud, F.; Martin, J.; Gallet, P.F.; Delourme, D.; Goulemot-Leger, V.; Amigues, Y.; Ménissier, F.; Levéziel, H.; Julien, R.; Oulmouden, A. A first genotyping assay of French cattle breeds based on a new allele of the extension gene encoding the melanocortin-1 receptor (Mc1r). Genet. Sel. Evol. 2000, 32, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Adams, N.J.; Smith, G.C.; Carpenter, Z.L. Performance, carcass and palatability characteristics of longhorn and other types of cattle. Meat Sci. 1982, 7, 67–79. [Google Scholar] [CrossRef]
- Sexten, A.K.; Krehbiel, C.R.; Dillwith, J.W.; Madden, R.D.; McMurphy, C.P.; Lalman, D.L.; Mateescu, R.G. Effect of muscle type, sire breed, and time of weaning on fatty acid composition of finishing steers. J. Anim. Sci. 2012, 90, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Miguel, G.Z.; Faria, M.H.; Roca, R.O.; Santos, C.T.; Suman, S.P.; Faitarone, A.B.G.; Delbem, N.L.C.; Girao, L.V.C.; Homem, J.M.; Barbosa, E.K.; et al. Immunocastration im-proves carcass traits and beef color attributes in Nellore and Nellore x Aberdeen Angus crossbred animals finished in feedlot. Meat Sci. 2014, 96, 884–891. [Google Scholar] [CrossRef]
- Garcia-de-Siles, J.L.; Ziegler, J.H.; Wilson, L.L. Prediction of beef quality by three grading systems. J. Food Sci. 1977, 42, 711–715. [Google Scholar] [CrossRef]
- Knapp, R.H.; Terry, C.A.; Savell, J.W.; Cross, H.R.; Mies, W.L.; Edwards, J.W. Characterization of cattle types to meet specific beef targets. J. Anim. Sci. 1989, 67, 2294–2308. [Google Scholar] [CrossRef]
- Perry, R.C.; Corah, L.R.; Cochran, R.C.; Beal, W.E.; Stevenson, J.S.; Minton, J.E.; Simms, D.D.; Brethour, J.R. Influence of dietary energy on follicular development, serum gonadotropins, and first postpartum ovulation in suckled beef cows. J. Anim. Sci. 1991, 69, 3762–3773. [Google Scholar] [CrossRef] [PubMed]
- Bass, P.D.; Scanga, J.A.; Chapman, P.L.; Smith, G.C.; Belk, K.E. Associations between portion size acceptability of beef cuts and ribeye area of beef carcasses. J. Anim. Sci. 2009, 87, 2935–2942. [Google Scholar] [CrossRef]
- Lundeen, T. The Challenges of Using Holstein Steer Carcasses in the Restaurant Industry. Meat Sci. 2008, 79, 641–646. [Google Scholar]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef] [PubMed]
- Grobet, L.; Royo Martin, L.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J.; et al. A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Bellinge, R.H.; Liberles, D.A.; Iaschi, S.P.; O’brien, P.A.; Tay, G.K. Myostatin and its implications on animal breeding: A review. Anim. Genet. 2005, 36, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.A.; Purfield, D.C.; Naderi, S.; Berry, D.P. Associations between polymorphisms in the myostatin gene with calving difficulty and carcass merit in cattle. J. Anim. Sci. 2023, 101, skad371. [Google Scholar] [CrossRef]
- Sellick, G.S.; Pitchford, W.S.; Morris, C.A.; Cullen, N.G.; Crawford, A.M.; Raadsma, H.W.; Bottema, C.D. Effect of myostatin F94L on carcass yield in cattle. Anim. Genet. 2007, 38, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Esmailizadeh, A.K.; Bottema, C.D.; Sellick, G.S.; Verbyla, A.P.; Morris, C.A.; Cullen, N.G.; Pitchford, W.S. Effects of the myostatin F94L substitution on beef traits. J. Anim. Sci. 2008, 86, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Lines, D.S.; Pitchford, W.S.; Kruk, Z.A.; Bottema, C.D. Limousin myostatin F94L variant affects semitendinosus tenderness. Meat Sci. 2009, 81, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Konovalova, E.; Romanenkova, O.; Zimina, A.; Volkova, V.; Sermyagin, A. Genetic variations and haplotypic diversity in the myostatin gene of different cattle breeds in Russia. Animals 2021, 11, 2810. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M. Variation in gelatinization and fragmentation of myostatin mutant cattle and its effects on beef tenderness. Meat Sci. 2001, 59, 33–39. [Google Scholar]
- Cafe, L.M.; Hennessy, D.W.; Hearnshaw, H.; Morris, S.G. Effects of the myostatin gene on beef production efficiency. Aust. J. Exp. Agric. 2006, 46, 183–190. [Google Scholar]
- Gill, P.; Smith, S.; Wilkinson, S. Genomic and phenotypic analysis of myostatin-deficient Angus cattle in Scotland. Genet. Sel. Evol. 2009, 41, 22. [Google Scholar]
- Fiems, L.O. Double muscling in cattle: Genes, husbandry, carcasses and meat. Animals 2012, 2, 472–506. [Google Scholar] [CrossRef] [PubMed]
- Menezes, G.R.; Souza, C.B.; Lima, A.; Gondo, A.; Siqueira, F.; Egito, A.A.; Silva, L.N.; Junior, J.A.; Júnior, R.A. 629. Effect of one copy of nt821 mutation in myostatin gene on ultrasound carcass traits in Senepol cattle. In Proceedings of the 12th World Congress on Genetics Applied to Livestock Production (WCGALP), Wageningen, The Netherlands, 9 February 2022; pp. 2601–2604. [Google Scholar]
- Robinson, D.L.; Café, L.M.; McKiernan, W.A. Heritability of muscle score and genetic and phenotypic relationships with weight, fatness and eye muscle area in beef cattle. Anim. Prod. Sci. 2014, 54, 1443–1448. [Google Scholar] [CrossRef]
- Cafe, L.M.; McKiernan, W.A.; Robinson, D.L. Selection for increased muscling improved feed efficiency and carcass characteristics of Angus steers. Anim. Prod. Sci. 2014, 54, 1412–1416. [Google Scholar] [CrossRef]
- Cafe, L.M.; Polkinghorne, R.; Robinson, D.L. Increased muscling and one copy of the 821 del11 myostatin mutation did not reduce meat quality in Angus steers. In Proceedings of the 33rd Biennial Conference of the Australian Association of Animal Science, Fremantle, Perth, Australia, 1–3 February 2021; Volume 33. [Google Scholar]
- Wiener, P.; Smith, J.A.; Lewis, A.M.; Woolliams, J.A.; Williams, J.L. Muscle-related traits in cattle: The role of the myostatin gene in the South Devon breed. Genet. Select. Evol. 2002, 34, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Casas, E.; Keele, J.W.; Fahrenkrug, S.C.; Smith, T.P.L.; Cundiff, L.V.; Stone, R.T. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 1999, 77, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Casas, E.; Bennett, G.L.; Smith, T.P.; Cundiff, L.V. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle. J. Anim. Sci. 2004, 82, 2913–2918. [Google Scholar] [CrossRef] [PubMed]
- Short, R.E.; MacNeil, M.D.; Grosz, M.D.; Gerrard, D.E.; Grings, E.E. Pleiotropic effects in Hereford, Limousin, and Piedmontese F2 crossbred calves of genes controlling muscularity including the Piedmontese myostatin allele. J. Anim. Sci. 2002, 80, 1–11. [Google Scholar] [CrossRef]
- Vissac, B.; Menissier, F.; Perreau, B. Etude du caractere culard. VII. Croissance et musculature des femelles, desequilibre morphologique au velage. Ann. Génét. Sél. Anim. 1973, 5, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Arthur, P.F.; Makarechian, M.; Price, M.A. Incidence of dystocia and perinatal calf mortality resulting from reciprocal crossing of double-muscled and normal cattle. Can. Vet. J. 1988, 29, 163–167. [Google Scholar]
- Mee, J.F.; Berry, D.P.; Cromie, A.R. Risk factors for calving assistance and dystocia in pasture-based Holstein-Friesian heifers and cows in Ireland. Vet. J. 2011, 187, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P.; Amer, P.R.; Evans, R.D.; Byrne, T.; Cromie, A.R.; Hely, F. A breeding index to rank beef bulls for use on dairy females to maximize profit. J. Dairy Sci. 2019, 102, 10056–10072. [Google Scholar] [CrossRef] [PubMed]
- Hosono, M.; Oyama, H.; Inoue, K. Genetic relationships of calving difficulty with birth measurements and carcass traits in Japanese Black cattle. Anim. Sci. J. 2020, 91, e13491. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, S.; Näsholm, A.; Johansson, K.; Philipsson, J. Genetic relationships between calving and carcass traits for Charolais and Hereford cattle in Sweden. J. Anim. Sci. 2004, 82, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D.; Sevane, N.; Nicolazzi, E.L.; MacHugh, D.E.; Park, S.D.E.; Colli, L.; Martinez, R.; Bruford, M.W.; Orozco-terWengel, P. Domestication of cattle: Two or three events? Evol. Appl. 2018, 12, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Evershed, R.P.; Payne, S.; Sherratt, A.; Copley, M.S.; Coolidge, J.; Urem-Kotsu, D.; Kotsakis, K.; Özdoǧan, M.; Özdoğan, A.E.; Nieuwenhuyse, O.P.; et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 2008, 455, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P. Invited review: Beef-on-dairy—The generation of crossbred beef × dairy cattle. J. Dairy Sci. 2021, 104, 3789–3819. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B.; Fikse, W.F.; Carlen, E.; Poso, J.; Aamand, G.P. Nordic breeding values for beef breed sires used for crossbreeding with dairy dams. In Proceedings of the 2019 Interbull Meeting, Cincinnati, OH, USA, 23–26 June 2019. [Google Scholar]
- Hessle, A.; Bertilsson, J.; Stenberg, B.; Kumm, K.; Sonesson, U. Combining environmentally and eco-nomically sustainable dairy and beef production in Sweden. Agric. Systems 2017, 156, 105–114. [Google Scholar] [CrossRef]
- Martín, N.; Coleman, L.; López-Villalobos, N.; Schreurs, N.; Morris, S.; Blair, H.; McDade, J.; Back, P.; Hickson, R. Estimated breeding values of beef sires can predict performance of beef-cross-dairy progeny. Front. Genet. 2021, 12, 712715. [Google Scholar] [CrossRef]
- Foraker, B.A.; Frink, J.L.; Woerner, D.R. Invited review: A carcass and meat perspective of crossbred beef × dairy cattle. Transl. Anim. Sci. 2022, 6, txac027. [Google Scholar] [CrossRef]
- Coleman, L.; Martín, N.; Back, P.; Blair, H.; López-Villalobos, N.; Hickson, R. Low Birthweight Beef Bulls Compared with Jersey Bulls Do Not Impact First Lactation and Rebreeding of First-Calving Dairy Heifers—A Case Study in New Zealand. Dairy 2022, 3, 87–97. [Google Scholar] [CrossRef]
- Williamson, H.R.; Schreurs, N.M.; Morris, S.T.; Hickson, R.E. Growth and carcass characteristics of beef-cross-dairy-breed heifers and steers born to different dam breeds. Animals 2022, 12, 864. [Google Scholar] [CrossRef]
- Waller, B.E.; Garcia, S.R.; Fuerniss, L.K.; Johnson, B.J.; Woerner, D.R.; Wulf, D.M. Effects of the F94L myostatin gene mutation in beef × dairy crossed cattle on muscle fiber type, live performance, carcass characteristics, and boxed beef and retail cut yields. J. Anim. Sci. 2023, 101, skad324. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Negrini, R.; Bergamaschi, M.; Ni, Q.; Patel, N.; Toledo-Alvarado, H.; Cecchinato, A. Pure-breeding with sexed semen and crossbreeding with semen from double-muscled sires to improve beef production from dairy herds: Live and slaughter performances of crossbred calves. J. Dairy Sci. 2020, 103, 5258–5262. [Google Scholar] [CrossRef] [PubMed]
- Haruna, I.L.; Li, Y.; Ekegbu, U.J.; Amirpour-Najafabadi, H.; Zhou, H.; Hickford, J.G.H. Associations between the bovine myostatin gene and milk fatty acid composition in New Zealand Holstein-Friesian × Jersey-Cross cows. Animals 2020, 10, 1447. [Google Scholar] [CrossRef] [PubMed]
- van Selm, B.; de Boer, I.J.; Ledgard, S.F.; van Middelaar, C.E. Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production. Agric. Syst. 2021, 186, 102936. [Google Scholar] [CrossRef]
- MPI. Mortality Rates in Bobby Calves 2008 to 2016; New Zealand Ministry for Primary Industries: Wellington, New Zealand, 2017; Available online: https://www.mpi.govt.nz/law-and-policy/legal-overviews/animal-welfare/animal-welfareregulations/caring-for-bobby-calves/ (accessed on 15 March 2024).
- Mee, J.F. Prevalence and risk factors for dystocia in dairy cattle: A review. Vet. J. 2008, 176, 93–101. [Google Scholar] [CrossRef]
- Hickson, R.E.; Anderson, W.J.; Kenyon, P.R.; Lopez-Villalobos, N.; Morris, S.T. A survey of beef cattle farmers in New Zealand, examining management practices of primiparous breeding heifers. N. Z. Vet. J. 2008, 56, 176–183. [Google Scholar] [CrossRef]
- Beef+Lamb New Zealand. Stock Number Survey as at 30 June 2023; Beef + Lamb New Zealand: Wellington, New Zealand, 2023. [Google Scholar]
Breed | MSTN Mutation | Effect |
---|---|---|
Belgium Blue | c.821(del11) | Double-muscled phenotype, high tenderness |
Angus | c.821(del11) | Increased EMA, reduced fatness |
Angus-cross | c.821(del11) | Higher carcass weights, no effect on marbling |
Senepol | c.821(del11) | Larger Longissimus dorsi muscle, leaner carcasses |
Limousin | c.282A | 5.5% increase in silverside percentage and EMA, 2.3% increase in total meat percentage |
Bull Breed | No | Calving Difficulty (eBV) # | Calving Difficulty (Relative) | Calving Difficulty Range | Gestation Length (eBV) | Gestation Length (Relative) |
---|---|---|---|---|---|---|
Belgian Blue-MSTN nt821(del11) | 50 | 1.09 | 44 | (−1.0 to +7.4) | −0.4 | 97 |
Angus | 127 | 0.29 | 32 | (−2.2 to +7.1) | −2.6 | 94 |
Current Friesians | 6795 | 1.30 | 64 | (−4.0 to +10.6) | −0.6 | 97 |
Suitable Angus | 81 | −0.29 | 32 | (−2.2 to +0.4) | −3.0 | 94 |
Suitable Belgian Blue-MSTN nt821(del11) | 19 | −0.10 | 47 | (−1.0 to +0.4) | −1.2 | 96 |
Crossbred | 1700 | −0.27 | 67 | (−5.0 to +3.9) | −2.4 | 97 |
Total | 8772 | 0.42 | 38 | (−4.0 to +7.4) | 2.2 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mckimmie, C.; Amirpour Najafabadi, H.; Alizadeh, H.; Hickford, J. Evaluating the Potential of Double-Muscled Angus Sires to Produce Progeny from Dairy Cows to Meet Premium Beef Brand Specifications. Appl. Sci. 2024, 14, 6440. https://doi.org/10.3390/app14156440
Mckimmie C, Amirpour Najafabadi H, Alizadeh H, Hickford J. Evaluating the Potential of Double-Muscled Angus Sires to Produce Progeny from Dairy Cows to Meet Premium Beef Brand Specifications. Applied Sciences. 2024; 14(15):6440. https://doi.org/10.3390/app14156440
Chicago/Turabian StyleMckimmie, Craig, Hamed Amirpour Najafabadi, Hossein Alizadeh, and Jon Hickford. 2024. "Evaluating the Potential of Double-Muscled Angus Sires to Produce Progeny from Dairy Cows to Meet Premium Beef Brand Specifications" Applied Sciences 14, no. 15: 6440. https://doi.org/10.3390/app14156440