Effects of La-Co Co-Substitution and Magnetic Field Pressing on the Structural and Magnetic Properties of SrM Hexaferrites
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Characteristics of Randomly Oriented Polycrystalline Samples
3.1.1. Lattice Parameters and Microstructures
3.1.2. Magnetic Properties of Random Polycrystalline Samples
3.2. Characteristics of MFP-Processed Samples
3.2.1. Grain Alignments and Microstructures
3.2.2. Magnetic Properties of MPF-Processed Samples
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pullar, R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- McCallum, R.; Lewis, L.H.; Skomski, R.; Kramer, M.; Anderson, I. Practical aspects of modern and future permanent magnets. Annu. Rev. Mater. Res. 2014, 44, 451–477. [Google Scholar] [CrossRef]
- Coey, J. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524–529. [Google Scholar] [CrossRef]
- Ormerod, J. Permanent magnet materials. IEE Colloquium on New Permanent Magnet Materials and Their Applications; IET: Stevenage, UK, 1989; pp. 1/1–1/5. [Google Scholar]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Smit, J.; Wijn, H. Ferrites; Philips Technical Library: Eindhoven, The Netherlands, 1959; Volume 278. [Google Scholar]
- Mallick, K.K.; Shepherd, P.; Green, R.J. Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 2007, 312, 418–429. [Google Scholar] [CrossRef]
- Baykal, A.; Sözeri, H.; Güngüneş, H.; Auwal, I.; Shirsath, S.E.; Sertkol, M.; Amir, M. Synthesis and Structural and Magnetic Characterization of BaZnxFe12−xO19 Hexaferrite: Hyperfine Interactions. J. Supercond. Novel Magn. 2017, 30, 1585–1592. [Google Scholar] [CrossRef]
- Behera, P.; Ravi, S. Influence of Al substitution on structural, dielectric and magnetic properties of M-type barium hexaferrite. J. Supercond. Nov. Magn. 2017, 30, 1453–1461. [Google Scholar] [CrossRef]
- Vinnik, D.; Zhivulin, V.; Starikov, A.Y.; Gudkova, S.; Trofimov, E.; Trukhanov, A.; Trukhanov, S.; Turchenko, V.; Matveev, V.; Lahderanta, E. Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12−xTixO19. J. Magn. Magn. Mater. 2020, 498, 166117. [Google Scholar] [CrossRef]
- Seifert, D.; Töpfer, J.; Langenhorst, F.; Le Breton, J.M.; Chiron, H.; Lechevallier, L. Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites. J. Magn. Magn. Mater. 2009, 321, 4045–4051. [Google Scholar] [CrossRef]
- Grossinger, R.; Kupferling, M.; Blanco, J.T.; Wiesinger, G.; Muller, M.; Hilscher, G.; Pieper, M.; Wang, J.; Harris, I. Rare earth substitutions in M-type ferrites. IEEE Trans. Magn. 2003, 39, 2911–2913. [Google Scholar] [CrossRef]
- Mangai, K.A.; Selvi, K.T.; Priya, M.; Sureshkumar, P.; Rathnakumari, M. Impedance and modulus spectroscopy studies of cobalt substituted strontium hexaferrite ceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 13445–13454. [Google Scholar] [CrossRef]
- Peng, L.; Li, L.; Wang, R.; Hu, Y.; Tu, X.; Zhong, X. Effect of La–CO substitution on the crystal structure and magnetic properties of low temperature sintered Sr1−xLaxFe12−xCoxO19 (x = 0–0.5) ferrites. J. Magn. Magn. Mater. 2015, 393, 399–403. [Google Scholar] [CrossRef]
- Yuping, L.; Yunfei, W.; Daxin, B. Enhanced coercivity of La–Co substituted Sr–Ca hexaferrite fabricated by improved ceramics process. J. Mater. Sci. Mater. Electron. 2016, 27, 4433–4436. [Google Scholar] [CrossRef]
- Liu, X.; Hernández-Gómez, P.; Huang, K.; Zhou, S.; Wang, Y.; Cai, X.; Sun, H.; Ma, B. Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 2006, 305, 524–528. [Google Scholar] [CrossRef]
- Mahadevan, S.; Sathe, V.; Reddy, V.R.; Sharma, P. Site Occupation and Magnetic Studies in La–Co-Substituted Barium Hexaferrite. IEEE Trans. Magn. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Kikuchi, T.; Nakamura, T.; Yamasaki, T.; Nakanishi, M.; Fujii, T.; Takada, J.; Ikeda, Y. Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method. J. Magn. Magn. Mater. 2010, 322, 2381–2385. [Google Scholar] [CrossRef]
- Iida, K.; Minachi, Y.; Masuzawa, K.; Kawakami, M.; Nishio, H.; Taguchi, H. High-performance ferrite magnets: M-type Sr-ferrite containing lanthanum and cobalt. J. Magn. Soc. Jpn. 1999, 23, 1093–1096. [Google Scholar] [CrossRef]
- Ogata, Y.; Kubota, Y.; Takami, T.; Tokunaga, M.; Shinokara, T. Improvements of magnetic properties of Sr ferrite magnets by substitutions of La and Co. IEEE Trans. Magn. 1999, 35, 3334–3336. [Google Scholar] [CrossRef]
- Zhou, Z. Magnetic Ferrite Materials; Science Press: Beijing, China, 1981; p. 563. [Google Scholar]
- Kools, F. The Action of a silica additive during sintering of strontium hexaferrite. Part II: Phase diagram, (sub) micron secondary phases and grain boundaries, grain growth and grain growth impediment, reaction induced grain growth impediment. Sci. Sinter. 1985, 17, 63. [Google Scholar]
- Töpfer, J.; Schwarzer, S.; Senz, S.; Hesse, D. Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. J. Eur. Ceram. Soc. 2005, 25, 1681–1688. [Google Scholar] [CrossRef]
- El Shater, R.; El-Ghazzawy, E.; El-Nimr, M. Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19. J. Alloys Compd. 2018, 739, 327–334. [Google Scholar] [CrossRef]
- Waki, T.; Okazaki, S.; Tabata, Y.; Kato, M.; Hirota, K.; Nakamura, H. Effect of oxygen potential on Co solubility limit in La–Co co-substituted magnetoplumbite-type strontium ferrite. Mater. Res. Bull. 2018, 104, 87–91. [Google Scholar] [CrossRef]
- Moon, K.-S.; Yang, D.-J.; Lee, S.-E.; Kim, D.H.; Kang, Y.-M. Effect of annealing in reduced oxygen pressure on the structure and magnetic properties of M-type hexaferrite bulk and film. J. Magn. Magn. Mater. 2017, 432, 37–41. [Google Scholar] [CrossRef]
- Liu, S. Magnetic alignment in powder magnet processing. J. Appl. Phys. 1994, 76, 6757–6759. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, C.; Wang, Y.; Zhou, L.; Li, J.; Liu, Y.; Zhang, H. Textured M-type barium hexaferrite Ba (ZnSn)xFe12−2xO19 with c-axis anisotropy and high squareness ratio. Ceram. Int. 2019, 45, 4535–4539. [Google Scholar] [CrossRef]
- Buschow, K.; Naastepad, P.; Westendorp, F. Preparation of SmCo5 permanent magnets. J. Appl. Phys. 1969, 40, 4029–4032. [Google Scholar] [CrossRef]
- Nagel, H. Magnetic properties of sintered Sm2TM17 magnets. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 1976; Volume 29, pp. 603–604. [Google Scholar]
- Zhu, K.; Bao, X.; Liu, H.; Li, J.; Yu, H.; Zha, S.; Zhou, X.; Chai, R.; Gao, X. DEM simulation of the magnetic pressing process of a Nd-Fe-B compact. Powder Technol. 2023, 415, 118187. [Google Scholar] [CrossRef]
- Peng, L.; Li, L.; Wang, R.; Hu, Y.; Tu, X.; Zhong, X. Microwave sintered Sr1−xLaxFe12−xCoxO19 (x = 0–0.5) ferrites for use in low temperature co-fired ceramics technology. J. Alloys Compd. 2016, 656, 290–294. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallogr. Sect. A cryst. Phys. Diffr. Theor. Gener. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Loan, T.T.; Nga, T.T.V.; Duong, N.P.; Soontaranon, S.; Hien, T.D. Influence of Structure and Oxidation State on Magnetic Properties of Sr1−xLaxFe12−xCoxO19 Nanoparticles Prepared by Sol–Gel Combustion Method. J. Electron. Mater. 2017, 46, 3396–3405. [Google Scholar] [CrossRef]
- Lechevallier, L.; Le Breton, J.; Teillet, J.; Morel, A.; Kools, F.; Tenaud, P. Mössbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys. B Condens. Matter 2003, 327, 135–139. [Google Scholar] [CrossRef]
- Morel, A.; Le Breton, J.; Kreisel, J.; Wiesinger, G.; Kools, F.; Tenaud, P. Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy. J. Magn. Magn. Mater. 2002, 242, 1405–1407. [Google Scholar] [CrossRef]
- Lee, K.; Kang, Y.-M.; Yoo, S.-I. Effects of La-Co Co-Substitution on the Structural and Magnetic Properties of SrM Hexaferrites Prepared by Solid-State Reaction. Appl. Sci. 2024, 14, 848. [Google Scholar] [CrossRef]
- Li, X.; Yang, W.; Bao, D.; Meng, X.; Lou, B. Influence of Ca substitution on the microstructure and magnetic properties of SrLaCo ferrite. J. Magn. Magn. Mater. 2013, 329, 1–5. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Liquid phase sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- Kang, S.-J.L. Sintering: Densification, Grain Growth and Microstructure; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Moon, K.-S.; Kang, Y.-M. Structural and magnetic properties of Ca-Mn-Zn-substituted M-type Sr-hexaferrites. J. Eur. Ceram. Soc. 2016, 36, 3383–3389. [Google Scholar] [CrossRef]
- Grossinger, R. A Critical-Examination of the Law of Approach to Saturation. 1. Fit Procedure. Phys. Status Solidi A 1981, 66, 665–674. [Google Scholar] [CrossRef]
- Kools, F. Proceedings of the MMA Grenoble. J. Phys. 1985, 46, C6–C349. [Google Scholar]
- Kools, F.; Morel, A.; Grossinger, R.; Le Breton, J.M.; Tenaud, P. LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects. J. Magn. Magn. Mater. 2002, 242, 1270–1276. [Google Scholar] [CrossRef]
- Du, J.; Zhou, T.; Lian, L.; Liu, Y.; Du, Y. Two-step sintering of M-type strontium ferrite with high coercivity. Ceram. Int. 2019, 45, 6978–6984. [Google Scholar] [CrossRef]
- Stingaciu, M.; Eikeland, A.Z.; Gjørup, F.H.; Deledda, S.; Christensen, M. Optimization of magnetic properties in fast consolidated SrFe12O19 nanocrystallites. RSC Adv. 2019, 9, 12968–12976. [Google Scholar] [CrossRef]
- Matsuura, Y.; Hoshijima, J.; Ishii, R. Relation between Nd2Fe14B grain alignment and coercive force decrease ratio in NdFeB sintered magnets. J. Magn. Magn. Mater. 2013, 336, 88–92. [Google Scholar] [CrossRef]
- Cespedes, E.; Rodriguez-Rodriguez, G.; Navio, C.; Osorio, M.; Guerrero, R.; Pedrosa, F.; Mompeán, F.; García-Hernández, M.; Fernández, J.; Quesada, A. Inter-grain effects on the magnetism of M-type strontium ferrite. J. Alloys Compd. 2017, 692, 280–287. [Google Scholar] [CrossRef]
x = 0.0 | x = 0.1 | x = 0.15 | x = 0.2 | x = 0.25 | x = 0.3 | |
---|---|---|---|---|---|---|
davg (μm) | 1.20 ± 0.15 | 1.42 ± 0.54 | 1.66 ± 0.34 | 1.72 ± 0.66 | 1.81 ± 0.66 | 1.96 ± 0.87 |
tavg (μm) | 1.10 ± 0.40 | 0.99 ± 0.34 | 0.97 ± 0.36 | 0.89 ± 0.31 | 0.91 ± 0.39 | 0.86 ± 0.30 |
Aspect ratio | 1.09 ± 0.38 | 1.43 ± 0.40 | 1.71 ± 0.71 | 1.93 ± 0.24 | 1.99 ± 0.45 | 2.28 ± 0.35 |
Vavg (μm3) | 1.03 | 1.30 | 1.74 | 1.71 | 1.94 | 2.15 |
D (g/cm3) | 4.82 | 4.72 | 4.87 | 4.82 | 4.82 | 4.78 |
D/Dth | 94.5 | 92.4 | 95.3 | 94.3 | 94.3 | 93.5 |
x | Ms (emu/g) | Ha (kOe) | Mr (emu/g) | Hci (kOe) | A (Oe) | Field Region for Fitting (kOe) | R2 |
---|---|---|---|---|---|---|---|
0.0 | 70.90 ± 0.01 | 17.7 ± 1.3 | 33.16 | 3.517 | 239 | 11–26 | 0.9944 |
0.1 | 71.28 ± 0.03 | 20.2 ± 1.4 | 36.30 | 3.645 | 230 | 12–26 | 0.9916 |
0.15 | 72.40 ± 0.04 | 21.1 ± 1.3 | 37.25 | 4.294 | 241 | 13–26 | 0.9912 |
0.2 | 71.91 ± 0.04 | 20.9 ± 1.1 | 36.03 | 4.295 | 227 | 13–26 | 0.9917 |
0.25 | 71.97 ± 0.05 | 22.7 ± 1.3 | 33.87 | 4.385 | 238 | 15–26 | 0.9976 |
0.3 | 71.38 ± 0.06 | 25.9 ± 1.5 | 36.17 | 5.001 | 240 | 17–26 | 0.9918 |
x = 0.0 | x = 0.15 | x = 0.2 | x = 0.3 | |
---|---|---|---|---|
davg (μm) | 1.30 ± 0.35 | 1.34 ± 0.33 | 1.37 ± 0.27 | 1.38 ± 0.20 |
tavg (μm) | 1.18 ± 0.21 | 0.92 ± 0.09 | 0.82 ± 0.08 | 0.77 ± 0.05 |
Aspect ratio | 1.10±0.31 | 1.46±0.20 | 1.67±0.22 | 1.79±0.12 |
Vavg(μm3) | 1.30 | 1.07 | 0.99 | 0.95 |
D(g/cm3) | 4.92 | 4.93 | 4.93 | 4.92 |
D/Dth | 96.2 | 96.5 | 96.5 | 96.2 |
MFP Samples | Non-MFP2 Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
x | 4πMr (kG) | Hci (kOe) | Hcb (kOe) | (BH)max (MGOe) | Q | 4πMr (kG) | Hci (kOe) | Hcb (kOe) | (BH)max (MGOe) | Q |
0.0 | 3.74 | 3.14 | 2.72 | 3.11 | 0.68 | 2.24 | 3.36 | 1.93 | 0.93 | 0.14 |
0.15 | 4.05 | 3.59 | 2.98 | 3.62 | 0.65 | 2.42 | 4.09 | 1.95 | 1.08 | 0.12 |
0.2 | 3.91 | 3.61 | 3.02 | 3.39 | 0.65 | 2.35 | 3.93 | 1.75 | 1.04 | 0.12 |
0.3 | 3.75 | 3.84 | 3.15 | 3.27 | 0.74 | 2.18 | 4.57 | 1.74 | 0.88 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Lee, S.; Kang, Y.-M.; Yoo, S.-I. Effects of La-Co Co-Substitution and Magnetic Field Pressing on the Structural and Magnetic Properties of SrM Hexaferrites. Appl. Sci. 2024, 14, 5519. https://doi.org/10.3390/app14135519
Lee K, Lee S, Kang Y-M, Yoo S-I. Effects of La-Co Co-Substitution and Magnetic Field Pressing on the Structural and Magnetic Properties of SrM Hexaferrites. Applied Sciences. 2024; 14(13):5519. https://doi.org/10.3390/app14135519
Chicago/Turabian StyleLee, Kanghyuk, Sunwoo Lee, Young-Min Kang, and Sang-Im Yoo. 2024. "Effects of La-Co Co-Substitution and Magnetic Field Pressing on the Structural and Magnetic Properties of SrM Hexaferrites" Applied Sciences 14, no. 13: 5519. https://doi.org/10.3390/app14135519
APA StyleLee, K., Lee, S., Kang, Y.-M., & Yoo, S.-I. (2024). Effects of La-Co Co-Substitution and Magnetic Field Pressing on the Structural and Magnetic Properties of SrM Hexaferrites. Applied Sciences, 14(13), 5519. https://doi.org/10.3390/app14135519