Application of Quantum Dots for Photocatalytic Hydrogen Evolution Reaction
Abstract
:1. Introduction
- (i)
- The cocatalyst can improve light absorption;
- (ii)
- The cocatalyst can reduce the activation energy or overpotential of the H2 generation reaction, leading to a fast surface reaction;
- (iii)
- The cocatalyst can boost the photogenerated charge carriers’ separation and transfer;
- (iv)
- The cocatalyst can suppress photocorrosion and increase the durability of the photocatalyst.
2. Quantum Dots-Based Photocatalyst for Hydrogen Evolution
2.1. Single-Semiconductor QDs as Photocatalyst
2.2. Semiconductor–Quantum-Dot-Based Hybrid Photocatalyst
2.2.1. Metal-Chalcogenide-QD-Based Hybrid Photocatalyst
2.2.2. Metal-Oxide-QD-Based Hybrid Photocatalyst
2.2.3. Metal-Phosphide-Quantum-Dot-Based Hybrid Photocatalyst
2.2.4. Mxenes-QDs-Based Hybrid Photocatalyst
2.3. Metal-QD-Based Hybrid Photocatalyst
2.4. Carbon Quantum Dots Based Hybrid Photocatalyst
3. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Xie, G.C.; Zhang, K.; Guo, B.D.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Huang, C.W.; Wu, J.C.S. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.Z. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photon. Rev. 2010, 4, 517–528. [Google Scholar] [CrossRef]
- Shangguan, W.F. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci. Technol. Adv. Mater. 2017, 8, 76–81. [Google Scholar] [CrossRef]
- Yuan, Y.P.; Ruan, L.W.; Barber, J.; Joachim Loo, S.C.; Xue, C. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 2014, 7, 3934–3951. [Google Scholar] [CrossRef]
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [PubMed]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Wang, Y.; Song, J.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. Nanoscale 2013, 5, 9830–9838. [Google Scholar] [CrossRef]
- Ge, L.; Zuo, F.; Liu, J.; Ma, Q.; Wang, C.; Sun, D.; Bartels, L.; Feng, P. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots. J. Phys. Chem. 2012, 116, 13708–13714. [Google Scholar] [CrossRef]
- Rao, V.N.; Reddy, N.L.; Kumari, M.M.; Cheralathan, K.K.; Ravi, P.; Sathish, M.; Neppolian, B.; Reddy, K.R.; Shetti, N.P.; Prathap, P.; et al. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review. J. Environ. Manag. 2019, 248, 109246. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173. [Google Scholar] [CrossRef]
- Albero, J.; Clifford, J.N.; Palomares, E. Quantum dot based molecular solar cells. Coord. Chem. Rev. 2014, 263–264, 53–64. [Google Scholar] [CrossRef]
- Fan, X.B.; Yu, S.; Hou, B.; Kim, J.M. Quantum Dots Based Photocatalytic Hydrogen Evolution. Isr. J. Chem. 2019, 59, 762–773. [Google Scholar] [CrossRef]
- Kandi, D.; Martha, S.; Parida, K.M. Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. Int. J. Hydrogen Energy 2017, 42, 9467–9481. [Google Scholar] [CrossRef]
- Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 2012, 41, 4067–4085. [Google Scholar] [CrossRef]
- Li, X.B.; Tung, C.H.; Wu, L.Z. Quantum Dot Assembly for Light-Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO2 Reduction. Angew. Chem.-Int. Edit. 2019, 58, 10804–10811. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Asadi, A.; Sillanpää, M.; Farhadian, N. Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. J. Mol. Liq. 2018, 271, 857–871. [Google Scholar] [CrossRef]
- Sui, Y.; Wu, L.; Zhong, S.; Liu, Q. Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 2019, 480, 810–816. [Google Scholar] [CrossRef]
- Chu, K.W.; Lee, S.L.; Chang, C.J.; Liu, L. Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers 2019, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Su, F.Y.; Zhang, W.-D. Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl. Surf. Sci. 2016, 375, 110–117. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; Zhang, T. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Adv. Mater. 2016, 28, 9454–9477. [Google Scholar] [CrossRef]
- Jin, X.; Fan, X.; Tian, J.; Cheng, R.; Li, M.; Zhang, L. MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 2016, 6, 52611–52619. [Google Scholar] [CrossRef]
- Fernando, K.A.S.; Sahu, S.; Liu, Y.; Lewis, W.K.; Guliants, E.A.; Jafariyan, A.; Wang, P.; Bunker, C.E.; Sun, Y.-P. Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Appl. Mater. Interfaces 2015, 7, 8363–8376. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Liu, J.; Han, B.; Hu, X.; Yang, F.; Xu, Z.; Li, Y.; Jia, S.; Li, Z.; et al. Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2018, 57, 5765–5771. [Google Scholar] [CrossRef]
- Sargin, I.; Yanalak, G.; Arslan, G.; Patir, I.H. Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 21781–21789. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351. [Google Scholar] [CrossRef]
- Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572–5575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef]
- Chen, J.; Lv, S.; Shen, Z.; Tian, P.; Chen, J.; Li, Y. Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution. ACS Sustain. Chem. Eng. 2019, 7, 13805–13814. [Google Scholar] [CrossRef]
- Fan, X.-B.; Yu, S.; Zhan, F.; Li, Z.-J.; Gao, Y.J.; Li, X.B.; Zhang, L.P.; Tao, Y.; Tung, C.H. Nonstoichiometric CuxInyS Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem 2017, 10, 4833–4838. [Google Scholar] [CrossRef]
- Han, J.S.; Liu, Y.; Wang, Y.; Zhao, R.Y.; Wang, L. Construction of ternary CdxMo1−xSe quantum dots for enhanced photocatalytic hydrogen production. J. Mater. Sci. 2020, 55, 1117–1125. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; Yang, G.; Yuan, Z.; Ji, X.; Kong, F.; Huang, B.; Dionysiou, D.D.; Chen, J. Hydrogel as a miniature hydrogen production reactor to enhance photocatalytic hydrogen evolution activities of CdS and ZnS quantum dots derived from modified gel crystal growth method. Chem. Eng. J. 2019, 373, 814–820. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, F.X.; Zhao, R.Y.; Huai, X.D.; Han, J.S.; Wang, L. Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation. J. Mater. Sci. 2019, 54, 8571–8580. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, W.; Yu, S.; Xie, Z.; Wei, S.; Zhou, Y. CdSe Quantum Dots/g-C3N4 Heterostructure for Efficient H2 Production under Visible Light Irradiation. ACS Omega 2018, 3, 17762–17769. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Han, J.; Wu, Y.; Xiang, Q.; Qiao, Y.; Feng, C.; Chen, Z.; Deng, X. In-situ synthesis of CdS quantum dots on CdCO3 cubic structure for enhanced photocatalytic hydrogen production performance. Mater. Lett. 2019, 255, 126560. [Google Scholar] [CrossRef]
- Pan, Y.X.; Zhuang, H.; Hong, J.; Fang, Z.; Liu, H.; Liu, B.; Huang, Y.; Xu, R. Cadmium Sulfide Quantum Dots Supported on Gallium and Indium Oxide for Visible-Light-Driven Hydrogen Evolution from Water. Chemsuschem 2014, 7, 2537–2544. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Gao, B.; Chen, J.; Du, Z.; Lin, B. Polymeric carbon nitride hybridized by CuInS2 quantum dots for photocatalytic hydrogen evolution. Mater. Lett. 2019, 254, 81–84. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, H.; Wang, R.L.; Shang, Y.Q.; Zhang, Q.; Li, W.; Zhang, G.Z.; Su, J.; Dinh, C.T.; Arquer, F.P.G.; et al. 0D-2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. Adv. Mater. 2017, 29, 1605646. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Shao, Y.; Ma, F.; Wu, Y.; Huang, B.; Hao, X. Band-gap-matched CdSe QD/WS2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting. Nano Energy 2017, 31, 84–89. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Zhang, J.; Li, C.; Xu, X.; Jin, Y. Shell Thickness Engineering Significantly Boosts the Photocatalytic H2 Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS Appl. Mater. Interfaces 2017, 9, 35712–35720. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Liu, M.C.; Cheng, C.; Deng, J.K.; Shi, J.W. Localized NiS2 Quantum Dots on g-C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production from Water. Chemcatchem 2018, 10, 5441–5448. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.F.; Li, X.Y.; Yu, W.B.; Dong, W.-D.; Zhao, H.; Hu, Z.-Y.; Deng, Z.; Wang, C.; Wu, S.-J.; et al. Molybdenum disulfide quantum dots directing zinc indium sulfide heterostructures for enhanced visible light hydrogen production. J. Colloid Interface Sci. 2019, 551, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Shi, J.; Mao, S.S.; Guo, L. Co3O4 quantum dots: Reverse micelle synthesis and visible-light-driven photocatalytic overall water splitting. Chem. Commun. 2014, 50, 2002–2004. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yin, J.; Cao, R.; Sun, P.; Zhang, S.; Xu, X. Constructing highly dispersed 0D Co3S4 quantum dots/2D g-C3N4 nanosheets nanocomposites for excellent photocatalytic performance. Sci. Bull. 2019, 64, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ke, J.; Li, Y.; Liu, B.; Wang, L.; Xiao, H.; Wang, S. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl. Catal. B-Environ. 2018, 236, 396–403. [Google Scholar] [CrossRef]
- Hong, W.; Zhou, Y.; Lv, C.; Han, Z.; Chen, G. NiO Quantum Dot Modified TiO2 toward Robust Hydrogen Production Performance. ACS Sustain. Chem. Eng. 2018, 6, 889–896. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, X.; Han, Y.; Geng, J. In-situ growth of 0D/2D Ni2P quantum dots/red phosphorus nanosheets with p-n heterojunction for efficient photocatalytic H2 evolution under visible light. Appl. Surf. Sci. 2019, 484, 293–299. [Google Scholar] [CrossRef]
- Lu, Z.; Li, C.; Han, J.; Wang, L.; Wang, S.; Ni, L.; Wang, Y. Construction 0D/2D heterojunction by highly dispersed Ni2P QDs loaded on the ultrathin g-C3N4 surface towards super high photocatalytic and photoelectric performance. Appl. Catal. B-Environ. 2018, 237, 919–926. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.; Guo, Y.; Liang, Z.; Cui, H.; Tian, J. Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11, 41440–41447. [Google Scholar] [CrossRef]
- Kuang, P.Y.; Zheng, P.X.; Liu, Z.Q.; Lei, J.L.; Wu, H.; Li, N.; Ma, T.-Y. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small 2016, 12, 6735–6744. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Quan, W.; Yu, L.; Hong, Y.; Song, C.; Fan, M.; Xiao, L.; Gu, W.; Shi, W. One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts. J. Alloys Compd. 2016, 686, 628–634. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Pan, H.; Liu, Y.; Xu, S.; Cao, S. In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination of the precursors for photocatalytic H2 evolution. Int. J. Hydrogen Energy 2018, 43, 91–99. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, F.; Hu, S.; Wu, B.; Wang, Y.; Zhang, H.; Jiang, B.; Fu, H. Graphene Quantum-Dot-Modified Hexagonal Tubular Carbon Nitride for Visible-Light Photocatalytic Hydrogen Evolution. ChemCatChem 2018, 10, 1330–1335. [Google Scholar] [CrossRef]
- Qin, J.; Zeng, H. Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl. Catal. B-Environ. 2017, 209, 161–173. [Google Scholar] [CrossRef]
- Devarayapalli, K.C.; Zeng, J.; Lee, D.S.; Vattikuti, S.V.P.; Shim, J. In-situ Pt nanoparticles decorated BiOBr heterostructure for enhanced visible light-based photocatalytic activity: Synergistic effect. Chemosphere 2022, 298, 134125. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, C.; Liu, J.; Qiao, W.; Zhao, J.; Yang, J.; Yu, Y.; Chen, S.; Qin, Y. Simultaneous Ni nanoparticles decoration and Ni doping of CdS nanorods for synergistically promoting photocatalytic H2 evolution. Appl. Surf. Sci. 2020, 508, 144869. [Google Scholar] [CrossRef]
- Mao, S.; Zou, Y.; Sun, G.; Zeng, L.; Wang, Z.; Ma, D.; Guo, Y.; Cheng, Y.; Wang, C.; Shi, J.-W. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J. Colloid Interface Sci. 2021, 581, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Hu, J.; Li, T.; Xu, S.; Chen, S.; Yin, H. Enhanced photocatalytic hydrogen evolution through MoS2 quantum dots modification of bismuth-based perovskites. Chem. Commun. 2024, 60, 1004. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Mo, Z.; Wang, Z.; Yan, P.; Sun, P.; Wu, G.; Zhang, J.; Zhu, X.; Wang, L.; Xu, H. Implanting nitrogen-doped graphene quantum dots on porous ultrathin carbon nitride for efficient metal-free photocatalytic hydrogen evolution. J. Environ. Chem. Eng. 2023, 11, 109801. [Google Scholar] [CrossRef]
- Zhu, S.C.; Xiao, F.X. Transition Metal Chalcogenides Quantum Dots: Emerging Building Blocks toward Solar-to-Hydrogen Conversion. ACS Catal. 2023, 13, 7269–7309. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Chen, D.; Yu, Z.T.; Zou, Z.G. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 11606–11630. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Zu, H.; Zhang, Z.; Han, J. Construction of TiO2/CdS heterojunction photocatslysts with enhanced visible light activity. Appl. Surf. Sci. 2018, 455, 729–735. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Liu, M.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 2018, 444, 485–490. [Google Scholar] [CrossRef]
- Wang, P.; Wu, T.; Ao, Y.; Wang, C. Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation. Renew. Energy 2019, 131, 180–186. [Google Scholar] [CrossRef]
- Huang, L.; Yang, J.; Wang, X.; Han, J.; Han, H.; Li, C. Effects of surface modification on photocatalytic activity of CdS nanocrystals studied by photoluminescence spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 553–560. [Google Scholar] [CrossRef]
- Yu, H.; Huang, Y.; Gao, D.; Wang, P.; Tang, H. Improved H2-generation performance of Pt/CdS photocatalyst by a dual-function TiO2 mediator for effective electron transfer and hole blocking. Ceram. Int. 2019, 45, 9807–9813. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, G.; Wang, X. Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl. Catal. B-Environ. 2015, 179, 479–488. [Google Scholar] [CrossRef]
- Hou, J.; Yang, C.; Cheng, H.; Wang, Z.; Jiao, S.; Zhu, H. Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys. Chem. Chem. Phys. 2013, 15, 15660–15668. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-B.; Yu, S.; Wang, X.; Li, Z.-J.; Zhan, F.; Li, J.-X.; Gao, Y.-J.; Xia, A.-D.; Tao, Y.; Li, X.-B.; et al. Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. Adv. Mater. 2019, 31, 1804872. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Lei, Y.L.; Li, H.; Ni, M.; Yang, D.R.; Xie, X.Y.; Wang, Y.F.; Ma, H.B.; Xu, W.G.; Xia, X.H. Suppressing Non-Radiative Relaxation through Single-Atom Metal Modification for Enhanced Fluorescence Efficiency in Molybdenum Disulfide Quantum Dots. Angew. Chem. Int. Ed. 2022, 61, 1–7. [Google Scholar]
- Yuan, Y.J.; Chen, D.Q.; Xiong, M.; Zhong, J.S.; Wan, Z.Y.; Zhou, Y.; Liu, S.; Yu, Z.T.; Yang, L.X.; Zou, Z.G. Bandgap engineering of (AgIn)xZn(2(1−x))S2 quantum dot photosensitizers for photocatalytic H2 generation. Appl. Catal. B-Environ. 2017, 204, 58–66. [Google Scholar] [CrossRef]
- Ma, Q.; Yue, H.X.; Zhu, Y.N.; Wang, J.P.; Che, Q.D.; Shi, R.X.; Yang, P. Synthesis and Optical Properties of CdTexSe1−x-Based Red to Near-Infrared Emitting Quantum Dots. J. Nanosci. Nanotechnol. 2015, 15, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.H.; Yang, P.; Zhang, L.P. Synthesis of near-infrared-emitting CdTeSe and CdZnTeSe quantum dots. Luminescence 2013, 28, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Lin, W.H.; Lu, Y.H.; Chiou, Y.D.; Hsu, Y.J. First demonstration of rainbow photocatalysts using ternary Cd1-xZnxSe nanorods of varying compositions. Appl. Catal. A-Gen. 2014, 476, 140–147. [Google Scholar] [CrossRef]
- Xiao, M.; Hao, M.; Lyu, M.; Moore, E.G.; Zhang, C.; Luo, B.; Hou, J.; Lipton-Duffin, J.; Wang, L. Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light-driven hydrogen generation. Adv. Funct. Mater. 2019, 29, 1905683. [Google Scholar] [CrossRef]
- Song, W.; Wang, Y.; Wang, C.; Wang, B.; Feng, J.; Luo, W.; Wu, C.; Yao, Y.; Zou, Z. Photocatalytic Hydrogen Production by Stable CsPbBr3@PANI Nanoparticles in Aqueous Solution. ChemCatChem 2021, 13, 1711. [Google Scholar] [CrossRef]
- Li, T.L.; Cai, C.D.; Yeh, T.F.; Teng, H. Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination. J. Alloys Compd. 2013, 550, 326–330. [Google Scholar] [CrossRef]
- Zhu, H.; Song, N.; Lian, T. Controlling Charge Separation and Recombination Rates in CdSe/ZnS Type I Core-Shell Quantum Dots by Shell Thicknesses. J. Am. Chem. Soc. 2010, 132, 15038–15045. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Li, X.B.; Wang, J.J.; Yu, S.; Li, C.B.; Tung, C.H.; Wu, L.Z. A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci. 2013, 6, 465–469. [Google Scholar] [CrossRef]
- Li, J.J.; Wang, Y.A.; Guo, W.Z.; Keay, J.C.; Mishima, T.D.; Johnson, M.B.; Peng, X.G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.W.; Yuan, Y.P.; Fang, J.; Shahjamali, M.M.; Boey, F.Y.C.; Barber, J.; Loo, S.C.J.; Xue, C. In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int. J. Hydrogen Energy 2013, 38, 1258–1266. [Google Scholar]
- Jiao, Y.; Huang, Q.; Wang, J.; He, Z.; Li, Z. A Novel MoS2 Quantum Dots (QDs) Decorated Z-Scheme g-C3N4 Nanosheet/N-Doped Carbon Dots Heterostructure Photocatalyst for Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. Energy 2019, 247, 124–132. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Chen, Z.; Qin, L.; Yang, L.; Zhu, L.; Tang, P.; Gao, T.; Huang, Y.; Sha, Z.; et al. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays. Appl. Catal. A-Gen. 2015, 498, 159–166. [Google Scholar] [CrossRef]
- Chen, W.; Yu, S.; Zhong, Y.; Fan, X.-B.; Wu, L.-Z.; Zhou, Y. Effect of electron transfer on the photocatalytic hydrogen evolution efficiency of faceted TiO2/CdSe QDs under visible light. New J. Chem. 2018, 42, 4811–4817. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1−xCdxS solid solution. Green Chem. 2010, 12, 1611–1614. [Google Scholar] [CrossRef]
- Thibert, A.; Frame, F.A.; Busby, E.; Holmes, M.A.; Osterloh, F.E.; Larsen, D.S. Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals. J. Phys. Chem. Lett. 2011, 2, 2688–2694. [Google Scholar] [CrossRef]
- Reddy, N.L.; Emin, S.; Valant, M.; Shankar, M.V. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. Int. J. Hydrogen Energy 2017, 42, 6627–6636. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, J.W.; Jia, X.; Ma, Y.H.; Zhang, X.W.; Wang, L.; Zou, J.J. Highly efficient Z-scheme WO3−x quantum dots/TiO2 for photocatalytic hydrogen generation. Chin. J. Catal. 2017, 38, 253–259. [Google Scholar] [CrossRef]
- Su, H.; Wang, W.; Shi, R.; Tang, H.; Sun, L.; Wang, L.; Liu, Q.; Zhang, T. Recent Advances in Quantum Dot Catalysts for Hydrogen Evolution: Synthesis, Characterization, and Photocatalytic Application. Carbon Energy 2023, 5, e280. [Google Scholar] [CrossRef]
- Nann, T.; Ibrahim, S.K.; Woi, P.-M.; Xu, S.; Ziegler, J.; Pickett, C.J. Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production. Angew. Chem.-Int. Edit. 2010, 49, 1574–1577. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Sun, M.; Wang, Y.; Cui, X.; Huang, B.; Yu, J.C. Enabling Efficient Photocatalytic Hydrogen Evolution via In Situ Loading of Ni Single Atomic Sites on Red Phosphorus Quantum Dots. Adv. Funct. Mater. 2022, 33, 2212051. [Google Scholar] [CrossRef]
- Yu, S.; Fan, X.B.; Wang, X.; Li, J.G.; Zhang, Q.; Xia, A.; Wei, S.Q.; Wu, L.Z.; Zhou, Y.; Patzke, G.R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009. [Google Scholar] [CrossRef]
- Yu, S.; Xie, Z.H.; Ran, M.X.; Wu, F.; Zhong, Y.Q.; Dan, M.; Zhou, Y.; Patzke, G.R. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J. Colloid. Interf. Sci. 2020, 573, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Y. 2D Early Transition Metal Carbides (MXenes) for Catalysis. Small 2019, 15, e1804736. [Google Scholar] [CrossRef]
- Gao, G.; Mullane, A.P.O.; Du, A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 2016, 7, 494–500. [Google Scholar] [CrossRef]
- Zhou, C.; Tan, K.B.; Han, W.; Wang, L.; Lu, M. A Review of MXene-Derived Quantum Dots: Synthesis, Characterization, Properties, and Applications. Particuology 2024, 91, 50–57. [Google Scholar] [CrossRef]
- Liang, X.; Liang, B.L.; Pan, Z.H.; Lang, X.F.; Zhang, Y.G.; Wang, G.S.; Yin, P.G.; Guo, L. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale 2015, 7, 20188–20196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.W.; Hou, W.B.; Pavaskar, P.; Aykol, M.; Cronin, S.B. Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination. Nano Lett. 2011, 11, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, K.; Tang, H.J.; Chen, Y.; Lu, C.G.; Liu, W.; Gao, Y.; Zhao, H.J.; Tang, Z.Y. New Insight into the Role of Gold Nanoparticles in Au@CdS Core-Shell Nanostructures for Hydrogen Evolution. Small 2014, 10, 4664–4670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lan, Z.A.; Lin, L.; Lin, S.; Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066. [Google Scholar] [CrossRef] [PubMed]
- Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M. Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catal. 2015, 5, 6615–6623. [Google Scholar] [CrossRef]
- Babu, B.; Cho, M.; Byon, C.; Shim, J. One pot synthesis of Ag-SnO2 quantum dots for highly enhanced sunlight-driven photocatalytic activity. J. Alloys Compd. 2018, 731, 162–171. [Google Scholar] [CrossRef]
- Yu, S.; Zhong, Y.Q.; Yu, B.Q.; Cai, S.Y.; Wu, L.Z.; Zhou, Y. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. Phys. Chem. Chem. Phys. 2016, 18, 20338–20344. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Deng, Y.; Liu, Q.; Fu, Z.; Liu, X.; Wang, M.; Xiao, Z.; Li, B.; Wang, L. Carbon-Quantum-Dots-Involved Fe/Co/Ni Phosphide Open Nanotubes for High Effective Seawater Electrocatalytic Decomposition. Appl. Catal. B Environ. Energy 2023, 326, 122403. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Zhong, Y.; Wang, Y.; Ye, J.; Zhou, Y. Study of Indium Phosphide Quantum Dots/Carbon Quantum Dots System for Enhanced Photocatalytic Hydrogen Production from Hydrogen Sulfide. Processes 2023, 11, 3160. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, C.; Hou, J.; Wang, F.; Min, S.; Ma, X.; Jin, Z.; Xu, J.; Lu, G.; Huang, K.-W. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Appl. Catal. B-Environ. 2017, 216, 59–69. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, J.; Wang, J.; Cui, H.; Li, L.; Zhu, Z. Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv. 2015, 5, 21332–21335. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; Zhou, J.; Chen, W.; Liu, M. Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2020, 399, 125782. [Google Scholar] [CrossRef]
Photocatalyst | Cocatalyst | Reaction Medium | Light Source | H2 Generation (mmol h−1 g−1) | Referenced Sample/Enhancement Factor a | Ref. | QDs Size (nm) |
---|---|---|---|---|---|---|---|
ZnCdS QDs | Na2SO3 and Na2S | 300 W Xe lamp (λ ≥ 420 nm) | 3.70 | bulk ZnCdS/5.2 | [33] | 4.5–7.8 | |
CuInS QDs | ascorbic acid | LED light source (470 nm) | 116 | Cu2S/18 | [34] | 3 | |
Cd0.67Mo0.33Se QDs | Na2SO3 and Na2S | 300 W Xe lamp | 0.911 | MoSe2 | [35] | 3 | |
CdS QDs | Na2SO3 and Na2S | 300 W Xe lamp | 0.410 | Bulk CdS/5 | [36] | 6 | |
CdSe/CdS/ZnS QDs | Na2SO3 and Na2S | 300 W Xe lamp | 0.195 | CdSe QDs/6.32 | [37] | 7.2 | |
CdSe QDs/g-C3N4 | L-ascorbic acid | 500 W Hg lamp (λ ≥ 420 nm) | 0.615 | g-C3N4/76 | [38] | 2–3 | |
CdCO3/CdS QDs | Na2SO3 and Na2S | 300 W Xe lamp (λ ≥ 420 nm) | 1.93 | [39] | 5 | ||
CdS QDs/Pt/In2O3 | Pt/In2O3 | Lactic acid | 300 W Xe lamp (λ ≥ 420 nm) | 1.03 | [40] | ||
CuInS2 QDs/CN | Triethanolamine (TEOA) | 300 W Xe lamp (λ ≥ 420 nm) | 1.92 | CN/2.6 | [41] | 5 | |
ZnAgInS QDs/2D MoS2 nanosheet | Ascorbic acid | 300 W Xe lamp (λ ≥ 400 nm) | 40.1 | [42] | 3–5 | ||
CdSe QDs/WS2 nanosheet | Lactic acid | 300 W Xe lamp (λ ≥ 420 nm) | 14 | [43] | 7–8 | ||
Colloidal CdS/CdSe core/shell QDs | Ascorbic acid | 300 W Xe lamp (λ ≥ 420 nm) | AQY b: 30.9% | CdS core/1.49 | [44] | ||
NiS QDs/g-C3N4 | NiS QDs | TEOA | 300 W Xe lamp (λ ≥ 420 nm) | 0.484 | pristine g-C3N4/45 | [45] | |
MoS2-QDs/ZnIn2S4 | MoS2-QDs | TEOA | 300 W Xe lamp (λ ≥ 420 nm) | 7.15 | pure ZnIn2S4/9 | [46] | 8 |
MoS2-QDs/g-C3N4 | MoS2-QDs | TEOA | 300 W Xe lamp (λ ≥ 420 nm) | 1.97 | g-C3N4/6.6 | [26] | |
Co3O4 QDs | 50 vol% ethanol | 300 W Xe lamp (λ ≥ 420 nm) | 1.1 | Bulk Co3O4 (No activity) | [47] | 3–4 | |
0D Co3S4 QD/2D g-C3N4 nanosheets | Co3S4 QDs | TEOA | 300 W Xe lamp (λ ≥ 400 nm) | 20.5 | g-C3N4 nanosheets/555 | [48] | 2–4 |
Co3O4 QDs/TiO2 nanobelts | Co3S4 QDs | 10 vol% methanol | 300 W Xe lamp (cut by 1.5 AM filter) | 1.74 | TiO2 nanobelts/1.3 | [49] | 3 |
NiO QD/TiO2 | NiO QDs | 10 vol% methanol | 300 W Xe lamp | 1.35 | pure TiO2/56 | [50] | 2 |
Ni2P QD/red P | Ni2P QDs | 10 vol% methanol | 300 W Xe lamp (λ ≥ 420 nm) | 0.27 | Red P/38.5 | [51] | 7 |
Ni2P QDs/g-C3N4 | Ni2P QDs | TEOA | 300 W Xe lamp (λ ≥ 420 nm) | 1.51 | pure g-C3N4/11 | [52] | 4–5 |
g-C3N4@Ti3C2 QDs | Ti3C2 QDs | TEOA | 300 W Xe lamp with a 1.5 AM filter | 5.12 | g-C3N4/26 | [53] | |
Au QDs/rimous CdS nanospheres | Au QDs | Na2S and Na2SO3 | 300 W Xe lamp (λ ≥ 420 nm) | 0.60 | CdS nanospheres/1.8 | [54] | 3.5 |
Ag QDs/g-C3N4 | Ag QDs | 20 vol% methanol | 300 W Xe lamp (λ ≥ 420 nm) | 0.0181 | g-C3N4/4.6 | [55] | |
CDs/g-C3N4 | CDs | TEOA | 300 W Xe lamp (λ ≥ 420 nm) | 2.34 | g-C3N4/4.6 | [56] | 4 |
CQDs/g-C3N4 | CQD | Methanol | 300 W Xe lamp (λ ≥ 420 nm) | 3.54 | g-C3N4 nanotubes/2.5 | [28] | |
CQDs/TiO2 | CQDs | Methanol | 500 W halogen lamp (λ ≥ 450 nm) | 0.0085 | TiO2/4 | [30] | 4–6 |
P-TCN c/GQDs | GQDs | 20 vol% methanol | 300 W Xe lamp (λ ≥ 420 nm) | 1.12 | bulk carbon nitride/9 | [57] | |
Ag/CQDs/g-C3N4 | Ag/CQDs | TEOA | 300 W Xe lamp (λ = 400 nm) | 0.627 | g-C3N4/6.7 | [58] | 2.59 |
Pt QDs/BiOBr | Pt QDs | Na2S and Na2SO3 | 300 W Xe lamp | 0.0320 | BiOBr/143 | [59] | |
Ni QDs/CdS | Ni QDs | Lactic acid | 300 W Xe lamp (λ > 420 nm) | 10.3 | CdS/30 | [60] | 5.1 |
CdS QDs/UiO-66 | Na2S and Na2SO3 | 225 W Xe light (λ > 420 nm) | 15.32 | UiO-66-(SH)2/CdS/25.3 | [61] | 1 | |
MoS2 QDs/Cs3Bi2I9 | MoS2 QDs | Ethanol, HI/H3PO2 mixed solution | 300 W Xe lamp (λ > 420 nm) | 6.09 | Cs3Bi2I9/9.8 | [62] | 2–5 |
N-GQDs/PUCN d | N-GQDs | TEOA | 300 W Xe lamp (λ ≥ 400 nm) | 0.529 | PUCN/208 | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, X.; Lu, Y.; Wang, Q.; Cai, M.; Sun, S. Application of Quantum Dots for Photocatalytic Hydrogen Evolution Reaction. Appl. Sci. 2024, 14, 5333. https://doi.org/10.3390/app14125333
Gui X, Lu Y, Wang Q, Cai M, Sun S. Application of Quantum Dots for Photocatalytic Hydrogen Evolution Reaction. Applied Sciences. 2024; 14(12):5333. https://doi.org/10.3390/app14125333
Chicago/Turabian StyleGui, Xia, Yao Lu, Qin Wang, Mengdie Cai, and Song Sun. 2024. "Application of Quantum Dots for Photocatalytic Hydrogen Evolution Reaction" Applied Sciences 14, no. 12: 5333. https://doi.org/10.3390/app14125333
APA StyleGui, X., Lu, Y., Wang, Q., Cai, M., & Sun, S. (2024). Application of Quantum Dots for Photocatalytic Hydrogen Evolution Reaction. Applied Sciences, 14(12), 5333. https://doi.org/10.3390/app14125333