Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedures
2.3. Statistical Analysis
3. Results
3.1. Resisted Sprint Performance and Mechanical Variables
3.2. FI (%) and Sdec (%)
3.3. CMJ Characteristics
4. Discussion
4.1. Resisted Sprint Performance and Mechanical Variables
4.2. FI (%) and Sdec (%)
4.3. CMJ Characteristics
4.4. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ingebrigtsen, J.; Dalen, T.; Hjelde, G.H.; Drust, B.; Wisløff, U. Acceleration and Sprint Profiles of a Professional Elite Football Team in Match Play. Eur. J. Sport Sci. 2015, 15, 101–110. [Google Scholar] [CrossRef]
- De Hoyo, M.; Sañudo, B.; Suárez-Arrones, L.; Carrasco, L.; Joel, T.; Domínguez-Cobo, S.; Núñez, F.J. Analysis of the Acceleration Profile according to Initial Speed and Positional Role in Elite Professional Male Soccer Players. J. Sports Med. Phys. Fit. 2018, 58, 1774–1780. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of High Intensity Activity in Premier League Soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; González-Haro, C.; Gormasz, C.; Pigozzi, F.; Bachl, N. Sprinting Analysis of Elite Soccer Players during European Champions League and UEFA Cup Matches. J. Sports Sci. 2010, 28, 1489–1494. [Google Scholar] [CrossRef]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and Sprint Profiles of Professional Male Football Players in Relation to Playing Position. PLoS ONE 2020, 15, e0236959. [Google Scholar] [CrossRef]
- Cardoso, P.; Tavares, F.; Loureiro, N.; Ferreira, R.; Araújo, J.P.; Reis, J.; Vaz, J.R. In-Situ Acceleration-Speed Profile of an Elite Soccer Academy: A Cross-Sectional Study. J. Sports Sci. 2023, 41, 1868–1874. [Google Scholar] [CrossRef]
- López-Sagarra, A.; Baena-Raya, A.; Casimiro-Artés, M.; Granero-Gil, P.; Rodríguez-Pérez, M.A. Seasonal Changes in the Acceleration–Speed Profile of Elite Soccer Players: A Longitudinal Study. Appl. Sci. 2022, 12, 12987. [Google Scholar] [CrossRef]
- Varley, M.C.; Aughey, R.J. Acceleration Profiles in Elite Australian Soccer. Int. J. Sports Med. 2013, 34, 34–39. [Google Scholar] [CrossRef]
- Edwards, T.; Piggott, B.; Banyard, H.G.; Haff, G.G.; Joyce, C. Sprint Acceleration Characteristics across the Australian Football Participation Pathway. Sports Biomech. 2023, 22, 1168–1180. [Google Scholar] [CrossRef]
- Evans, D.A.; Jackson, D.T.; Kelly, A.L.; Williams, C.A.; McAuley, A.B.T.; Knapman, H.; Morgan, P.T. Monitoring Postmatch Fatigue during a Competitive Season in Elite Youth Soccer Players. J. Athl. Train. 2022, 57, 184–190. [Google Scholar] [CrossRef]
- Emmonds, S.; Sawczuk, T.; Scantlebury, S.; Till, K.; Jones, B. Seasonal Changes in the Physical Performance of Elite Youth Female Soccer Players. J. Strength Cond. Res. 2020, 34, 2636–2643. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-Sprint Ability—Part I: Factors Contributing to Fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Brocherie, F.; Millet, G.P.; Girard, O. Neuro-Mechanical and Metabolic Adjustments to the Repeated Anaerobic Sprint Test in Professional Football Players. Eur. J. Appl. Physiol. 2015, 115, 891–903. [Google Scholar] [CrossRef]
- Michailidis, Y. The Effectiveness of Different Training Methods in Soccer for Repeated Sprint Ability: A Brief Review. Appl. Sci. 2022, 12, 11803. [Google Scholar] [CrossRef]
- Rey, E.; Padrón-Cabo, A.; Costa, P.B.; Lago-Fuentes, C. Effects of Different Repeated Sprint-Training Frequencies in Youth Soccer Players. Biol. Sport 2019, 36, 257–264. [Google Scholar] [CrossRef]
- de Andrade, V.L.; Palucci Vieira, L.H.; Kalva-Filho, C.A.; Santiago, P.R.P. Critical Points of Performance in Repeated Sprint: A Kinematic Approach. Sci. Sports 2021, 36, e141–e150. [Google Scholar] [CrossRef]
- Thurlow, F.; Weakley, J.; Townshend, A.D.; Timmins, R.G.; Morrison, M.; McLaren, S.J. The Acute Demands of Repeated-Sprint Training on Physiological, Neuromuscular, Perceptual and Performance Outcomes in Team Sport Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2023, 53, 1609–1640. [Google Scholar] [CrossRef]
- Ross, A.; Leveritt, M. Long-Term Metabolic and Skeletal Muscle Adaptations to Short-Sprint Training: Implications for Sprint Training and Tapering. Sports Med. 2001, 31, 1063–1082. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint Performance and Mechanical Outputs Computed with an IPhone App: Comparison with Existing Reference Methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef]
- Van Den Tillaar, R. Comparison of Step-by-Step Kinematics in Repeated 30-m Sprints in Female Soccer Players. J. Strength Cond. Res. 2018, 32, 1923–1928. [Google Scholar] [CrossRef]
- Weakley, J.; Castilla, A.P.; Ramos, A.G.; Banyard, H.; Thurlow, F.; Edwards, T.; Morrison, M.; McMahon, E.; Owen, C. Effect of Traditional, Rest Redistribution, and Velocity-Based Prescription on Repeated Sprint Training Performance and Responses in Semiprofessional Athletes. J. Strength Cond. Res. 2023, 37, 1566–1572. [Google Scholar] [CrossRef]
- Gonçalves, B.A.M.; Meinders, E.; Saxby, D.J.; Barrett, R.S.; Bourne, M.N.; Diamond, L.E. Repeated Sprints Alter Mechanical Work Done by Hip and Knee, but Not Ankle, Sagittal Moments. J. Sci. Med. Sport 2021, 24, 939–944. [Google Scholar] [CrossRef]
- Hermosilla-Palma, F.; Loro-Ferrer, J.F.; Merino-Muñoz, P.; Gómez-Álvarez, N.; Bustamante-Garrido, A.; Cerda-Kohler, H.; Portes-Junior, M.; Aedo-Muñoz, E. Changes in the Mechanical Properties of the Horizontal Force-Velocity Profile during a Repeated Sprint Test in Professional Soccer Players. Int. J. Environ. Res. Public Health 2022, 20, 704. [Google Scholar] [CrossRef]
- Le Scouarnec, J.; Samozino, P.; Andrieu, B.; Thubin, T.; Morin, J.B.; Favier, F.B. Effects of Repeated Sprint Training with Progressive Elastic Resistance on Sprint Performance and Anterior-Posterior Force Production in Elite Young Soccer Players. J. Strength Cond. Res. 2022, 36, 1675–1681. [Google Scholar] [CrossRef]
- Nicholson, B.; Dinsdale, A.; Jones, B.; Till, K. The Training of Short Distance Sprint Performance in Football Code Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1179–1207. [Google Scholar] [CrossRef]
- Kawamori, N.; Nosaka, K.; Newton, R.U. Relationships between Ground Reaction Impulse and Sprint Acceleration Performance in Team Sport Athletes. J. Strength Cond. Res. 2013, 27, 568–573. [Google Scholar] [CrossRef]
- Sugisaki, N.; Kobayashi, K.; Yoshimoto, T.; Mitsukawa, N.; Tsuchie, H.; Takai, Y.; Kanehisa, H. Influence of Horizontal Resistance Loads on Spatiotemporal and Ground Reaction Force Variables during Maximal Sprint Acceleration. PLoS ONE 2023, 18, e0295758. [Google Scholar] [CrossRef]
- Fornasier-Santos, C.; Arnould, A.; Jusseaume, J.; Millot, B.; Guilhem, G.; Couturier, A.; Samozino, P.; Slawinski, J.; Morin, J.B. Sprint Acceleration Mechanical Outputs Derived from Position– or Velocity–Time Data: A Multi-System Comparison Study. Sensors 2022, 22, 8610. [Google Scholar] [CrossRef]
- Edouard, P.; Lahti, J.; Nagahara, R.; Samozino, P.; Navarro, L.; Guex, K.; Rossi, J.; Brughelli, M.; Mendiguchia, J.; Morin, J.B. Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football. Int. J. Environ. Res. Public Health 2021, 18, 7827. [Google Scholar] [CrossRef]
- Nagahara, R.; Morin, J.B.; Koido, M. Impairment of Sprint Mechanical Properties in an Actual Soccer Match: A Pilot Study. Int. J. Sports Physiol. Perform. 2016, 11, 893–898. [Google Scholar] [CrossRef]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of Transition during Human Accelerated Sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef]
- Romero, V.; Lahti, J.; Castaño Zambudio, A.; Mendiguchia, J.; Jiménez Reyes, P.; Morin, J.B. Effects of Fatigue Induced by Repeated Sprints on Sprint Biomechanics in Football Players: Should We Look at the Group or the Individual? Int. J. Environ. Res. Public Health 2022, 19, 14643. [Google Scholar] [CrossRef]
- von Lieres und Wilkau, H.C.; Irwin, G.; Bezodis, N.E.; Simpson, S.; Bezodis, I.N. Phase Analysis in Maximal Sprinting: An Investigation of Step-to-Step Technical Changes between the Initial Acceleration, Transition and Maximal Velocity Phases. Sports Biomech. 2020, 19, 141–156. [Google Scholar] [CrossRef]
- Pinheiro, G.d.S.; Drummond, M.; Almeida, A.; Szmuchrowski, L.; Couto, B. The Effect of a Repeated Sprint Training Session on Neuromuscular Acute Fatigue. Lect. Educ. Física Deportes 2022, 27, 42–55. [Google Scholar] [CrossRef]
- Engel, F.A.; Altmann, S.; Chtourou, H.; Woll, A.; Neumann, R.; Yona, T.; Sperlich, B. Repeated Sprint Protocols with Standardized Versus Self-Selected Recovery Periods in Elite Youth Soccer Players: Can They Pace Themselves? A Replication Study. Pediatr. Exerc. Sci. 2022, 34, 193–201. [Google Scholar] [CrossRef]
- Ulupınar, S.; Hazır, T.; Kin İşler, A. The Contribution of Energy Systems in Repeated-Sprint Protocols: The Effect of Distance, Rest, and Repetition. Res. Q. Exerc. Sport 2023, 94, 173–179. [Google Scholar] [CrossRef]
- Ulupınar, S.; Özbay, S.; Gençoğlu, C.; Franchini, E.; Kishalı, N.F.; İnce, İ. Effects of Sprint Distance and Repetition Number on Energy System Contributions in Soccer Players. J. Exerc. Sci. Fit. 2021, 19, 182–188. [Google Scholar] [CrossRef]
- Rogers, T.; Gill, N.; Beaven, C.M. A Comparison of Three Different Work to Rest Periods during Intermittent Sprint Training on Maintaining Sprint Effort Performance. J. Exerc. Sci. Fit. 2024, 22, 97–102. [Google Scholar] [CrossRef]
- Cross, M.R.; Brughelli, M.; Samozino, P.; Brown, S.R.; Morin, J.B. Optimal Loading for Maximizing Power During Sled-Resisted Sprinting. Int. J. Sports Physiol. Perform. 2017, 12, 1069–1077. [Google Scholar] [CrossRef]
- Cahill, M.J.; Oliver, J.L.; Cronin, J.B.; Clark, K.; Cross, M.R.; Lloyd, R.S.; Lee, J.E. Influence of Resisted Sled-Pull Training on the Sprint Force-Velocity Profile of Male High-School Athletes. J. Strength Cond. Res. 2020, 34, 2751–2759. [Google Scholar] [CrossRef]
- Cahill, M.J.; Cahill, M.J.; Cronin, J.B.; Oliver, J.L.; Clark, K.P.; Lloyd, R.S.; Cross, M.R. Resisted Sled Training for Young Athletes: When to Push and Pull. Strength Cond. J. 2020, 42, 91–99. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef]
- Lahti, J.; Huuhka, T.; Romero, V.; Bezodis, I.; Morin, J.-B.; Häkkinen, K. Changes in Sprint Performance and Sagittal Plane Kinematics after Heavy Resisted Sprint Training in Professional Soccer Players. PeerJ 2020, 8, e10507. [Google Scholar] [CrossRef]
- Osterwald, K.M.; Kelly, D.T.; Comyns, T.M.; Catháin, C. Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population. Sports 2021, 9, 137. [Google Scholar] [CrossRef]
- McMorrow, B.J.; Ditroilo, M.; Egan, B. Effect of Heavy Resisted Sled Sprint Training During the Competitive Season on Sprint and Change-of-Direction Performance in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 1066–1073. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Sáez De Villarreal, E.; Mora-Custodio, R.; Asián-Clemente, J.A.; Bachero-Mena, B.; Loturco, I.; Pareja-Blanco, F. Effects of Different Loading Conditions During Resisted Sprint Training on Sprint Performance. J. Strength Cond. Res. 2022, 36, 2725–2732. [Google Scholar] [CrossRef]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical Ability of Force Application as a Determinant Factor of Sprint Performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Kawamori, N.; Newton, R.U.; Hori, N.; Nosaka, K. Effects of Weighted Sled Towing with Heavy versus Light Load on Sprint Acceleration Ability. J. Strength Cond. Res. 2014, 28, 2738–2745. [Google Scholar] [CrossRef]
- Kotuła, K.; Matusiński, A.; Zając, A.; Krzysztofik, M. Sprint Resisted and Assisted Priming for Peak Performance. J. Strength Cond. Res. 2023, 37, 2354–2361. [Google Scholar] [CrossRef]
- Matusiński, A.; Gołas, A.; Zajac, A.; Maszczyk, A. Acute Effects of Resisted and Assisted Locomotor Activation on Sprint Performance. Biol. Sport 2022, 39, 1049–1054. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal Sprint Speed in Boys of Increasing Maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. Influence of Age, Maturity, and Body Size on the Spatiotemporal Determinants of Maximal Sprint Speed in Boys. J. Strength Cond. Res. 2017, 31, 1009–1016. [Google Scholar] [CrossRef]
- Fernández-Galván, L.M.; Casado, A.; García-Ramos, A.; Haff, G.G. Effects of Vest and Sled Resisted Sprint Training on Sprint Performance in Young Soccer Players: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2022, 36, 2023–2034. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Mohamad, I.N.; Mohamad, S.; Oliver, J.L.; Hughes, M.G. The Effect of Resisted Sprint Training on Maximum Sprint Kinetics and Kinematics in Youth. Eur. J. Sport Sci. 2015, 15, 374–381. [Google Scholar] [CrossRef]
- Park, S.B.; Park, D.S.; Kim, M.; Lee, E.; Lee, D.; Jung, J.; Son, S.J.; Hong, J.; Yang, W.H. High-Intensity Warm-up Increases Anaerobic Energy Contribution during 100-m Sprint. Biology 2021, 10, 198. [Google Scholar] [CrossRef]
- Røkke, O. Validation of Force-, Velocity-, and Acceleration-Time Curves and Temporal Characteristics as Output Data from the 1080 Sprint. Master’s Theses, Norwegian School of Sport Sciences, Oslo, Norway, 2018. [Google Scholar]
- Gepfert, M.; Golas, A.; Zajac, T.; Krzysztofik, M. The Use of Different Modes of Post-Activation Potentiation (PAP) for Enhancing Speed of the Slide-Step in Basketball Players. Int. J. Environ. Res. Public Health 2020, 17, 5057. [Google Scholar] [CrossRef]
- Sugisaki, N.; Tsuchie, H.; Takai, Y.; Kobayashi, K.; Yoshimoto, T.; Kanehisa, H. Validity of Spatiotemporal and Ground Reaction Force Estimates during Resisted Sprinting with a Motorized Loading Device. Scand. J. Med. Sci. Sports 2024, 34, e14597. [Google Scholar] [CrossRef]
- Rakovic, E.; Paulsen, G.; Helland, C.; Haugen, T.; Eriksrud, O. Validity and Reliability of a Motorized Sprint Resistance Device. J. Strength Cond. Res. 2022, 36, 2335–2338. [Google Scholar] [CrossRef]
- Mangine, G.T.; Huet, K.; Williamson, C.; Bechke, E.; Serafini, P.; Bender, D.; Hudy, J.; Townsend, J. A Resisted Sprint Improves Rate of Force Development during a 20-m Sprint in Athletes. J. Strength Cond. Res. 2018, 32, 1531–1537. [Google Scholar] [CrossRef]
- Rakovic, E.; Paulsen, G.; Helland, C.; Eriksrud, O.; Haugen, T. The Effect of Individualised Sprint Training in Elite Female Team Sport Athletes: A Pilot Study. J. Sports Sci. 2018, 36, 2802–2808. [Google Scholar] [CrossRef]
- Helland, C.; Haugen, T.; Rakovic, E.; Eriksrud, O.; Seynnes, O.; Mero, A.A.; Paulsen, G. Force–Velocity Profiling of Sprinting Athletes: Single-Run vs. Multiple-Run Methods. Eur. J. Appl. Physiol. 2019, 119, 465–473. [Google Scholar] [CrossRef]
- Cross, M.R.; Lahti, J.; Brown, S.R.; Chedati, M.; Jimenez-Reyes, P.; Samozino, P.; Eriksrud, O.; Morin, J.B. Training at Maximal Power in Resisted Sprinting: Optimal Load Determination Methodology and Pilot Results in Team Sport Athletes. PLoS ONE 2018, 13, e0195477. [Google Scholar] [CrossRef]
- Petrakos, G.; Morin, J.B.; Egan, B. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review. Sports Med. 2016, 46, 381–400. [Google Scholar] [CrossRef]
- Lindsay, O.; Fletcher, J.R. Does The Countermovement Jump Accurately Assess Lower-Limb Neuromuscular Fatigue? Med. Sci. Sports Exerc. 2022, 54, 18. [Google Scholar] [CrossRef]
- Wu, P.P.Y.; Sterkenburg, N.; Everett, K.; Chapman, D.W.; White, N.; Mengersen, K. Predicting Fatigue Using Countermovement Jump Force-Time Signatures: PCA Can Distinguish Neuromuscular versus Metabolic Fatigue. PLoS ONE 2019, 14, e0219295. [Google Scholar] [CrossRef]
- Murr, S.; Aldred, M.; Games, J. Monitoring Countermovement Jump Performance for Division I Basketball Players over the Competitive Season. Am. J. Sports Sci. 2023, 11, 33–40. [Google Scholar] [CrossRef]
- Armada-Cortés, E.; Benítez-Muñoz, J.A.; San Juan, A.F.; Sánchez-Sánchez, J. Evaluation of Neuromuscular Fatigue according to Injury History in a Repeat Sprint Ability Test, Countermovement Jump, and Hamstring Test in Elite Female Soccer Players. Appl. Sci. 2022, 12, 2970. [Google Scholar] [CrossRef]
- Bachero-Mena, B.; Sánchez-Moreno, M.; Pareja-Blanco, F.; Sañudo, B. Acute and Short-Term Response to Different Loading Conditions During Resisted Sprint Training. Int. J. Sports Physiol. Perform. 2020, 15, 997–1004. [Google Scholar] [CrossRef]
- Monahan, M.; Petrakos, G.; Egan, B. Physiological and Perceptual Responses to a Single Session of Resisted Sled Sprint Training at Light or Heavy Sled Loads. J. Strength Cond. Res. 2022, 36, 2733–2740. [Google Scholar] [CrossRef]
- Wdowski, M.M.; Clarke, N.; Eyre, E.L.J.; Morris, R.; Noon, M.; Eustace, S.J.; Hankey, J.; Raymond, L.M.; Richardson, D.L. The Effect of Fatigue on First Stance Phase Kinetics during Acceleration Sprint Running in Professional Football Players. Sci. Med. Footb. 2021, 5, 90–96. [Google Scholar] [CrossRef]
- Runacres, A.; Mackintosh, K.A.; McNarry, M.A. Investigating the Kinetics of Repeated Sprint Ability in National Level Adolescent Hockey Players. J. Sports Sci. 2023, 41, 391–398. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Cross, M.; Ross, A.; Samozino, P.; Brughelli, M.; Gill, N.; Morin, J.B. Changes in Mechanical Properties of Sprinting during Repeated Sprint in Elite Rugby Sevens Athletes. Eur. J. Sport Sci. 2019, 19, 585–594. [Google Scholar] [CrossRef]
- Haugen, T.; Tonnessen, E.; Leirstein, S.; Hem, E.; Seiler, S. Not Quite so Fast: Effect of Training at 90% Sprint Speed on Maximal and Repeated-Sprint Ability in Soccer Players. J. Sports Sci. 2014, 32, 1979–1986. [Google Scholar] [CrossRef]
- Monte, A.; Nardello, F.; Zamparo, P. Sled Towing: The Optimal Overload for Peak Power Production. Int. J. Sports Physiol. Perform. 2017, 12, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Micallef, J.P.; Millet, G.P. Changes in Spring-Mass Model Characteristics during Repeated Running Sprints. Eur. J. Appl. Physiol. 2011, 111, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Brocherie, F.; Morin, J.B.; Degache, F.; Millet, G.P. Comparison of Four Sections for Analyzing Running Mechanics Alterations during Repeated Treadmill Sprints. J. Appl. Biomech. 2015, 31, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, J.; García-Unanue, J.; Hernando, E.; López-Fernández, J.; Colino, E.; León-Jiménez, M.; Gallardo, L. Repeated Sprint Ability and Muscular Responses according to the Age Category in Elite Youth Soccer Players. Front. Physiol. 2019, 10, 175. [Google Scholar] [CrossRef]
- Tsoukos, A.; Bogdanis, G.C. Physiological Responses and Fatigue during a Repeated Shuttle-Sprint Running Test in Adolescent Schoolchildren: A Comparison between Sexes and Fatigue Calculation Methods. Children 2023, 10, 1041. [Google Scholar] [CrossRef]
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 4.05 ± 0.14 | 0.015 | 4.034 | 4.095 | p F η2 | 0.178 1.835 0.012 | 1.00 0.013 0.001 | 0.928 0.271 0.009 |
RST40S | 4.03 ± 0.16 | 0.017 | 3.996 | 4.067 | |||||
Peak speed [m/s] | RST2M | 6.64 ± 0.28 | 0.030 | 6.561 | 6.680 | p F | 0.494 0.469 0.003 | 0.997 0.066 0.002 | 0.356 1.112 0.034 |
RST40S | 6.66 ± 0.25 | 0.027 | 6.594 | 6.703 | |||||
Peak force [N] | RST2M | 192.00 ± 21.51 | 2.281 | 186.741 | 196.102 | p F | 0.590 0.292 0.002 | 0.194 1.497 0.046 | 0.678 0.628 0.020 |
RST40S | 190.56 ± 21.72 | 2.303 | 184.839 | 194.378 | |||||
Peak power [W] | RST2M | 1059.95 ± 78.53 | 8.325 | 1036.495 | 1068.911 | F | 0.621 0.246 0.002 | 0.992 0.099 0.003 | 0.152 1.641 0.050 |
RST40S | 1063.26 ± 68.39 | 7.249 | 1043.732 | 1072.527 | |||||
AvgStep length [m] | RST2M | 1.17 ± 0.04 | 0.005 | 1.155 | 1.176 | F | 0.230 1.449 0.010 | 0.750 0.535 0.017 | 0.912 0.301 0.010 |
RST40S | 1.17 ± 0.05 | 0.006 | 1.164 | 1.186 | |||||
AvgStep frequency [Hz] | RST2M | 4.23 ± 0.19 | 0.020 | 4.200 | 4.283 | F | 0.906 0.014 0.000 | 0.837 0.417 0.013 | 0.996 0.078 0.003 |
RST40S | 4.23 ± 0.18 | 0.020 | 4.203 | 4.286 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 1.51 ± 0.06 | 0.007 | 1.501 | 1.530 | F | 0.097 2.790 0.018 | 0.989 0.114 0.004 | 0.866 0.344 0.011 |
RST40S | 1.49 ± 0.09 | 0.010 | 1.474 | 1.514 | |||||
Peak speed [m/s] | RST2M | 5.05 ± 0.20 | 0.021 | 4.992 | 5.073 | p F | 0.218 1.530 0.010 | 0.849 0.399 0.013 | 0.815 0.447 0.014 |
RST40S | 5.08 ± 0.20 | 0.022 | 5.027 | 5.113 | |||||
Peak force [N] | RST2M | 201.31 ± 10.66 | 1.131 | 198.470 | 203.129 | p F | 0.709 0.139 0.001 | 0.687 0.617 0.019 | 0.500 0.874 0.027 |
RST40S | 201.74 ± 11.39 | 1.208 | 198.923 | 203.976 | |||||
Peak power [W] | RST2M | 838.31 ± 66.35 | 7.034 | 818.232 | 844.401 | p F | 0.757 0.096 0.001 | 0.840 0.411 0.013 | 0.775 0.501 0.016 |
RST40S | 841.62 ± 73.40 | 7.781 | 819.610 | 849.287 | |||||
AvgStep length [m] | RST2M | 0.82 ± 0.06 | 0.006 | 0.811 | 0.837 | p F | 0.107 2.632 0.017 | 0.620 0.706 0.022 | 0.803 0.464 0.015 |
RST40S | 0.84 ± 0.07 | 0.007 | 0.825 | 0.856 | |||||
AvgStep frequency [Hz] | RST2M | 4.00 ± 0.21 | 0.023 | 3.968 | 4.062 | F | 0.571 0.322 0.002 | 0.756 0.526 0.017 | 0.868 0.371 0.012 |
RST40S | 4.02 ± 0.23 | 0.025 | 3.984 | 4.087 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group× Trial | |||||
Sprint time [s] | RST2M | 0.91 ± 0.02 | 0.003 | 0.911 | 0.923 | F | 0.151 2.079 0.16 | 0.976 0.161 0.008 | 0.796 0.473 0.016 |
RST40S | 0.91 ± 0.02 | 0.003 | 0.904 | 0.917 | |||||
Peak speed [m/s] | RST2M | 6.03 ± 0.24 | 0.026 | 5.970 | 6.075 | F | 0.445 0.586 0.004 | 0.995 0.080 0.003 | 0.813 0.449 0.014 |
RST40S | 6.06 ± 0.23 | 0.025 | 6.000 | 6.103 | |||||
Peak force [N] | RST2M | 163.61 ± 6.94 | 0.736 | 161.604 | 164.527 | F | 0.433 0.618 0.004 | 0.862 0.380 0.012 | 0.432 0.979 0.030 |
RST40S | 162.81 ± 7.57 | 0.803 | 160.609 | 163.796 | |||||
Peak power [W] | RST2M | 955.18 ± 69.46 | 7.363 | 935.797 | 965.624 | F | 0.942 0.005 0.000 | 0.871 0.366 0.012 | 0.438 0.970 0.030 |
RST40S | 954.80 ± 72.33 | 7.667 | 934.495 | 965.326 | |||||
AvgStep length [m] | RST2M | 1.21 ± 0.05 | 0.005 | 1.203 | 1.225 | F | 0.238 1.402 0.009 | 0.937 0.254 0.007 | 0.997 0.068 0.002 |
RST40S | 1.22 ± 0.05 | 0.006 | 1.213 | 1.235 | |||||
AvgStep frequency [Hz] | RST2M | 4.42 ± 0.20 | 0.021 | 4.393 | 4.480 | F | 0.852 0.035 0.000 | 0.973 0.171 0.005 | 0.997 0.066 0.000 |
RST40S | 4.42 ± 0.19 | 0.021 | 4.387 | 4.473 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 0.82 ± 0.03 | 0.003 | 0.823 | 0.836 | p F | 0.584 0.301 0.000 | 0.998 0.051 0.000 | 0.878 0.355 0.013 |
RST40S | 0.82 ± 0.03 | 0.003 | 0.821 | 0.834 | |||||
Peak speed [m/s] | RST2M | 6.49 ± 0.26 | 0.028 | 6.426 | 6.541 | p F | 0.697 0.152 0.001 | 0.990 0.109 0.003 | 0.559 0.789 0.025 |
RST40S | 6.50 ± 0.25 | 0.027 | 6.443 | 6.555 | |||||
Peak force [N] | RST2M | 160.23 ± 6.73 | 0.714 | 158.281 | 161.105 | p F | 0.880 0.023 0.000 | 0.904 0.314 0.010 | 0.486 0.850 0.028 |
RST40S | 160.00 ± 6.39 | 0.678 | 158.198 | 160.889 | |||||
Peak power [W] | RST2M | 1029.43 ± 78.26 | 8.296 | 1007.917 | 1041.745 | p F | 0.896 0.017 0.000 | 0.952 0.223 0.007 | 0.503 0.870 0.027 |
RST40S | 1031.25 ± 73.98 | 7.843 | 1010.556 | 1042.209 | |||||
AvgStep length [m] | RST2M | 1.37 ± 0.06 | 0.007 | 1.355 | 1.382 | p F | 0.693 0.156 0.002 | 0.856 0.389 0.012 | 1.000 0.009 0.000 |
RST40S | 1.37 ± 0.06 | 0.007 | 1.358 | 1.386 | |||||
AvgStep frequency [Hz] | RST2M | 4.41 ± 0.21 | 0.022 | 4.369 | 4.463 | F | 0.944 0.005 0.000 | 0.852 0.012 0.395 | 0.944 0.241 0.008 |
RST40S | 4.40 ± 0.21 | 0.022 | 4.367 | 4.460 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 0.80 ± 0.03 | 0.004 | 0.793 | 0.809 | p F | 0.664 0.189 0.000 | 0.992 0.100 0.005 | 0.474 0.913 0.030 |
RST40S | 0.79 ± 0.03 | 0.004 | 0.791 | 0.806 | |||||
Peak speed [m/s] | RST2M | 6.63 ± 0.28 | 0.030 | 6.558 | 6.677 | p F | 0.474 0.515 0.003 | 0.997 0.067 0.002 | 0.366 1.094 0.034 |
RST40S | 6.66 ± 0.25 | 0.027 | 6.593 | 6.702 | |||||
Peak force [N] | RST2M | 159.50 ± 6.73 | 0.714 | 157.518 | 160.310 | F | 0.631 0.232 0.001 | 0.748 0.536 0.017 | 0.251 1.337 0.041 |
RST40S | 159.83 ± 6.15 | 0.652 | 158.084 | 160.668 | |||||
Peak power [W] | RST2M | 1055.14 ± 79.16 | 8.391 | 1031.358 | 1063.856 | p F | 0.492 0.473 0.003 | 0.954 0.220 0.007 | 0.174 1.562 0.048 |
RST40S | 1060.45 ± 68.78 | 7.291 | 1040.713 | 1069.591 | |||||
AvgStep length [m] | RST2M | 1.49 ± 0.08 | 0.009 | 1.473 | 1.510 | p F | 0.185 1.773 0.012 | 0.125 1.757 0.053 | 0.879 0.355 0.012 |
RST40S | 1.50 ± 0.08 | 0.009 | 1.491 | 1.527 | |||||
AvgStep frequency [Hz] | RST2M | 4.22 ± 0.26 | 0.028 | 4.164 | 4.282 | p F | 0.345 0.896 0.006 | 0.265 1.304 0.040 | 0.915 0.296 0.009 |
RST40S | 4.18 ± 0.25 | 0.027 | 4.127 | 4.241 |
Fatigue Variables | Group | M | SE | 95% CI | Paired T-Test | |||
---|---|---|---|---|---|---|---|---|
LL | UL | t | ES | |||||
FI (%) | RST2M | 4.61 ± 2.20 | 0.568 | 2.39 | 1.00 | −0.874 | 0.397 | 0.22 |
RST40S | 3.92 ± 2.54 | 0.656 | ||||||
Sdec (%) | RST2M | 2.17 ± 1.02 | 0.26 | −0.47 | 1.28 | 0.986 | 0.341 | 0.25 |
RST40S | 1.17 ± 1.05 | 0.27 |
CMJ Variables | Group | Pre | Post | Post–Pre | SE | Post–Pre 95% CI | Independent T-Test | ||
---|---|---|---|---|---|---|---|---|---|
LL | UL | ES | |||||||
Height (cm) | RST2M | 40.63 ± 4.21 | 38.68 ± 3.44 | −1.95 ± 2.09 | 0.541 | −3.407 | 0.127 | 0.068 | 0.71 |
RST40S | 39.86 ± 4.23 | 39.54 ± 3.89 | −0.31 ± 2.60 | 0.671 | |||||
Take-off Velocity (m/s) | RST2M | 2.82 ± 0.14 | 2.75 ± 0.12 | −0.06 ± 0.7 | 0.019 | −0.118 | 0.005 | 0.073 | 0.70 |
RST40S | 2.79 ± 0.14 | 2.78 ± 0.13 | −0.01 ± 0.09 | 0.023 | |||||
CMJ Depth (cm) | RST2M | −29.44 ± 6.62 | −30.43 ± 6.18 | −0.98 ± 5.41 | 1.397 | −3.325 | 2.792 | 0.860 | 0.06 |
RST40S | −30.26 ± 5.77 | −30.98 ± 5.86 | −0.72 ± 2.03 | 0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.; Hong, J. Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players. Appl. Sci. 2024, 14, 5082. https://doi.org/10.3390/app14125082
Jung D, Hong J. Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players. Applied Sciences. 2024; 14(12):5082. https://doi.org/10.3390/app14125082
Chicago/Turabian StyleJung, Daum, and Junggi Hong. 2024. "Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players" Applied Sciences 14, no. 12: 5082. https://doi.org/10.3390/app14125082
APA StyleJung, D., & Hong, J. (2024). Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players. Applied Sciences, 14(12), 5082. https://doi.org/10.3390/app14125082