Machine Learning-Driven Calibration of Traffic Models Based on a Real-Time Video Analysis
Abstract
:1. Introduction
1.1. Implementation of Intelligent Transport Systems via Simulation Model of Traffic Flow
1.2. Machine Learning for Intelligent Transport System Technologies
1.3. Capturing Intelligent Transport System Data to Develop Machine Learning Applications
2. Analysis of the Influence of the Dynamics of the PTS on the Operation of the VTS
2.1. Impact of Traffic Flow Dynamics on the Performance of ML Models
- Data extraction: Collecting data fragments from streams to create a current sample of the studied parameter;
- Extracting critical characteristics from the collected data;
- Calculating test statistics to evaluate the static deviation degree of the extracted data from the original or current VTS distribution;
- Determining the statistical significance of the deviation to initiate system adaptation to the new distribution.
2.2. Scheme of Operation and Calibration of the SMTF
3. Methodology for Analyzing Video Stream Data
3.1. Algorithm for Extracting Traffic Data from a Video Stream
- Camera calibration and conversion of image coordinates to GNSS coordinates;
- Tracking and calculation of spatiotemporal characteristics of vehicles;
- Applying the Kalman filter to smooth the extracted values.
3.2. Tracking Algorithm and Indirect Calculation of Vehicle Characteristics
4. Simulation Results of the SMTF Calibration Algorithm and Comparison of Results with PTS
- For the signal transmission time from the vehicle to the infrastructure object, a reduction of 37.64% was reached;
- For vehicle speed, a reduction of 72.89% was achieved;
- For the angle of rotation of the car relative to the geographic north, a reduction of 49.27% was acquired.
5. Discussion
- For the signal transmission time from the vehicle to the infrastructure object, the average value is GEH = 3.4;
- For vehicle speed, the average value is GEH = 1.55;
- For the angle of rotation of the car relative to the geographic north, the average value is GEH = 5.98.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bronzino, J.D.; Peterson, D.R. (Eds.) Medical Devices and Human Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Statsenko, A.A.; Rogov, A.A.; Obukhov, I.V.; Smirnova, E.E. Developing Software and Hardware for Automation of Ground Urban Transport Traffic Management. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg/Moscow, Russia, 26–29 January 2021; pp. 1102–1105. [Google Scholar] [CrossRef]
- Mommad Salah, W.; Tie Gang, Z. Comparison of Hospital Logistics Systems. Int. J. Sci. Res. Publ. 2021, 11, 696–708. [Google Scholar] [CrossRef]
- Jin, J.; Rong, D.; Pang, Y.; Ye, P.; Ji, Q.; Wang, X.; Wang, G.; Wang, F.-Y. An Agent-Based Traffic Recommendation System: Revisiting and Revising Urban Traffic Management Strategies. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 52, 7289–7301. [Google Scholar] [CrossRef]
- Miles, J.C. Intelligent Transport Systems: Overview and Structure (History, Applications, and Architectures); Crolla, D., Foster, D.E., Kobayashi, T., Vaughan, N., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 1–16. [Google Scholar]
- Vukadinovic, V.; Bakowski, K.; Marsch, P.; Garcia, I.D.; Xu, H.; Sybis, M.; Sroka, P.; Wesolowski, K.; Lister, D.; Thibault, I. 3GPP C-V2X and IEEE 802.11p for Vehicle-to-Vehicle Communications in Highway Platooning Scenarios. Ad Hoc Netw. 2018, 74, 17–29. [Google Scholar] [CrossRef]
- Liao, X.; Zhao, X.; Wang, Z.; Han, K.; Tiwari, P.; Barth, M.J.; Wu, G. Game Theory-Based Ramp Merging for Mixed Traffic With Unity-SUMO Co-Simulation. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5746–5757. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Fei, W. Multitask-Oriented Brain-Controlled Intelligent Vehicle Based on Human–Machine Intelligence Integration. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 2510–2521. [Google Scholar] [CrossRef]
- Hu, Z.; Lou, S.; Xing, Y.; Wang, X.; Cao, D.; Lv, C. Review and Perspectives on Driver Digital Twin and Its Enabling Technologies for Intelligent Vehicles. IEEE Trans. Intell. Veh. 2022, 7, 417–440. [Google Scholar] [CrossRef]
- Huang, G.-L.; Zaslavsky, A.; Loke, S.W.; Abkenar, A.; Medvedev, A.; Hassani, A. Context-Aware Machine Learning for Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 17–36. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, G.; Li, Y.; Wang, F.-Y. Parallel Vision for Intelligent Transportation Systems in Metaverse: Challenges, Solutions, and Potential Applications. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3400–3413. [Google Scholar] [CrossRef]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models and Simulation; Springer: Berlin/Heidelberg, Germay, 2013; Volume 67, ISBN 978-3-642-32460-4. [Google Scholar]
- Storani, F.; Di Pace, R.; Bruno, F.; Fiori, C. Analysis and Comparison of Traffic Flow Models: A New Hybrid Traffic Flow Model vs Benchmark Models. Eur. Transp. Res. Rev. 2021, 13, 58. [Google Scholar] [CrossRef]
- Khan, Z.H.; Gulliver, T.A. A Macroscopic Traffic Model for Traffic Flow Harmonization. Eur. Transp. Res. Rev. 2018, 10, 30. [Google Scholar] [CrossRef]
- Gipps, P.G. A Behavioural Car-Following Model for Computer Simulation. Transp. Res. Part B Methodol. 1981, 15, 105–111. [Google Scholar] [CrossRef]
- Gora, P.; Katrakazas, C.; Drabicki, A.; Islam, F.; Ostaszewski, P. Microscopic Traffic Simulation Models for Connected and Automated Vehicles (CAVs)—State-of-the-Art. Procedia Comput. Sci. 2020, 170, 474–481. [Google Scholar] [CrossRef]
- Postigo, I. Developing Microscopic Traffic Simulation Models for the Transition towards Automated Driving; Springer: Cham, Switzerland, 2022; ISBN 978-91-7929-438-0. [Google Scholar]
- Imai, Y.; Fujii, H.; Okano, K.; Matsudaira, M.; Suzuki, T. Development of Dynamic Micro- and Macroscopic Hybrid Model for Efficient Highway Traffic Simulation: Model Extension to Merging Sections and Validation with Probe Data. Int. J. Intell. Transp. Syst. Res. 2024, 22, 159–170. [Google Scholar] [CrossRef]
- Imran, W.; Khan, Z.H.; Aaron Gulliver, T.; Khattak, K.S.; Nasir, H. A Macroscopic Traffic Model for Heterogeneous Flow. Chin. J. Phys. 2020, 63, 419–435. [Google Scholar] [CrossRef]
- Nazarov, F.M.; Eshtemirov, B.S.; Saydullayev, Q.S. Microscopic and Macroscopic Flow Models of Traffic Management. Tips 2023, 1, 1–11. [Google Scholar] [CrossRef]
- Andersen, N.S.; Chiarandini, M.; Debrabant, K. A Comparison of Different Approaches to Dynamic Origin-Destination Matrix Estimation in Urban Traffic. arXiv 2022, arXiv:2202.00099. [Google Scholar]
- Bochenina, K.; Taleiko, A.; Ruotsalainen, L. Simulation-Based Origin-Destination Matrix Reduction: A Case Study of Helsinki City Area. SUMO Conf. Proc. 2023, 4, 1–13. [Google Scholar] [CrossRef]
- Englezou, Y.; Timotheou, S.; Panayiotou, C.G. Bayesian Estimation of the Origin-Destination Matrix Using Traffic Flow Dynamics. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2545–2550. [Google Scholar] [CrossRef]
- Amini, S.; Tilg, G.; Busch, F. Calibration of Mesoscopic Simulation Models for Urban Corridors Based on the Macroscopic Fundamental Diagram. 2019. Available online: https://transp-or.epfl.ch/heart/2019/abstracts/hEART_2019_paper_181.pdf (accessed on 8 April 2024).
- Lee, J.-B.; Ozbay, K. Calibration of a Macroscopic Traffic Simulation Model Using Enhanced Simultaneous Perturbation Stochastic Approximation Methodology. 2008. Available online: https://trid.trb.org/View/848861 (accessed on 8 April 2024).
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.-P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wiessner, E. Microscopic Traffic Simulation Using SUMO. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar]
- Lopukhova, E.; Abdulnagimov, A.; Voronkov, G.; Kutluyarov, R.; Grakhova, E. Universal Learning Approach of an Intelligent Algorithm for Non-GNSS Assisted Beamsteering in V2I Systems. Information 2023, 14, 86. [Google Scholar] [CrossRef]
- Krajzewicz, D.; Erdmann, J.; Behrisch, M.; Bieker, L. Recent Development and Applications of SUMO—Simulation of Urban Mobility. Int. J. Adv. Syst. Meas. 2012, 5, 128–138. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d1dbcb56fb58e437806505f8e865d69555d868af#page=48 (accessed on 8 April 2024).
- Szendrei, Z.; Varga, N.; Bokor, L. A SUMO-Based Hardware-in-the-Loop V2X Simulation Framework for Testing and Rapid Prototyping of Cooperative Vehicular Applications; Jármai, K., Bolló, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 426–440. [Google Scholar]
- Antoniou, C.; Ben-Akiva, M.; Koutsopoulos, H.N. Online Calibration of Traffic Prediction Models. Transp. Res. Rec. 2005, 1934, 235–245. [Google Scholar] [CrossRef]
- Salles, D.; Kaufmann, S.; Reuss, H.-C. Extending the Intelligent Driver Model in SUMO and Verifying the Drive Off Trajectories with Aerial Measurements. SUMO Conf. Proc. 2020, 1, 1–25. [Google Scholar] [CrossRef]
- Ross, M.; Du, L.; Seibold, B. Spatial-Temporal EV Charging Demand Model Considering Generic Second-Order Traffic Flows. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 789–794. [Google Scholar]
- Hashemi, H.; Abdelghany, K. Integrated Method for Online Calibration of Real-Time Traffic Network Management Systems. Transp. Res. Rec. 2015, 2528, 106–115. [Google Scholar] [CrossRef]
- Keler, A.; Kunz, A.; Amini, S.; Bogenberger, K. Calibration of a Microscopic Traffic Simulation in an Urban Scenario Using Loop Detector Data: A Case Study within the Digital Twin Munich. In SUMO Conference Proceedings; TIB Open Publishing Technische Informationsbibliothek: Hannover, Germany, 2023; Volume 4, p. 153. [Google Scholar] [CrossRef]
- Bamdad Mehrabani, B.; Sgambi, L.; Maerivoet, S.; Snelder, M. Development, Calibration, and Validation of a Large-Scale Traffic Simulation Model: Belgium Road Network. In SUMO Conference Proceedings; TIB Open Publishing Technische Informationsbibliothek: Hannover, Germany, 2023; Volume 4, pp. 15–27. [Google Scholar] [CrossRef]
- Gonzalez-Delicado, J.J.; Gozalvez, J.; Mena-Oreja, J.; Sepulcre, M.; Coll-Perales, B. Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO. IEEE Access 2021, 9, 154423–154434. [Google Scholar] [CrossRef]
- Balakrishna, R.; Antoniou, C.; Ben-Akiva, M.; Koutsopoulos, H.N.; Wen, Y. Calibration of Microscopic Traffic Simulation Models: Methods and Application. Transp. Res. Rec. 2007, 1999, 198–207. [Google Scholar] [CrossRef]
- Lighthill, M.J.; Whitham, G.B. On Kinematic Waves II. A Theory of Traffic Flow on Long Crowded Roads. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1997, 229, 317–345. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.-N.; Li, S.-B.; Cui, F.-Y.; Zhang, J.; Wang, T. Phase Transition of Traffic Congestion in Lattice Hydrodynamic Model: Modeling, Calibration and Validation. Mod. Phys. Lett. B 2024, 38, 2450012. [Google Scholar] [CrossRef]
- Rompis, S.Y.R.; Habtemichael, F.G. Calibration of Traffic Incident Simulation Models Using Field Data. Int. J. Sustain. Transp. Technol. 2019, 2, 19–26. [Google Scholar] [CrossRef]
- Dadashzadeh, N.; Ergun, M.; Kesten, A.S.; Zura, M. Improving the Calibration Time of Traffic Simulation Models Using Parallel Computing Technique. In Proceedings of the 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Cracow, Poland, 5–7 June 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Cobos, C.; Erazo, C.; Luna, J.; Mendoza, M.; Gaviria, C.; Arteaga, C.; Paz, A. Multi-Objective Memetic Algorithm Based on NSGA-II and Simulated Annealing for Calibrating CORSIM Micro-Simulation Models of Vehicular Traffic Flow; Luaces, O., Gámez, J.A., Barrenechea, E., Troncoso, A., Galar, M., Quintián, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9868, pp. 468–476. [Google Scholar]
- Yu, M.; Fan, W. Calibration of Microscopic Traffic Simulation Models Using Metaheuristic Algorithms. Int. J. Transp. Sci. Technol. 2017, 6, 63–77. [Google Scholar] [CrossRef]
- Burghout, W.; Koutsopoulos, H.N.; Andréasson, I. Hybrid Mesoscopic–Microscopic Traffic Simulation. Transp. Res. Rec. 2005, 1934, 218–225. [Google Scholar] [CrossRef]
- Bourrel, E.; Lesort, J.-B. Mixing Microscopic and Macroscopic Representations of Traffic Flow: Hybrid Model Based on Lighthill–Whitham–Richards Theory. Transp. Res. Rec. 2003, 1852, 193–200. [Google Scholar] [CrossRef]
- Bourrel, E.; Lesort, J. Mixing Micro and Macro Representations of Traffic Flow: A Hybrid Model Based on the LWR Theory. 2003. Available online: https://www.semanticscholar.org/paper/Mixing-Micro-and-Macro-Representations-of-Traffic-a-Bourrel-Lesort/9f5d08d4f35180a9b3d2dd2385a036910fba626d (accessed on 8 April 2024).
- Magne, L.; Rabut, S.; Gabard, J.; Toulouse, O. Towards an Hybrid Macro-Micro Traffic Flow Simulation Model. 2000. Available online: https://www.semanticscholar.org/paper/Towards-an-hybrid-macro-micro-traffic-flow-model-Magne-Rabut/7b073b5a3cede03297e383cea558559a920623d0 (accessed on 8 April 2024).
- Khan, I.; Ahmed, Z. ML and DL Classifications of Route Conditions Using Accelerometers and Gyroscope Sensors. In Proceedings of the 2023 3rd International Conference on Artificial Intelligence (ICAI), Islamabad, Pakistan, 22–23 February 2023; pp. 242–249. [Google Scholar] [CrossRef]
- Sujatha, A. Traffic Congestion Detection and Alternative Route Provision Using Machine Learning and IoT-Based Surveillance. J. Mach. Comput. 2023, 3, 475–485. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H. Prediction of Road Traffic Congestion Based on Random Forest. In Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 9–10 December 2017; Volume 2, pp. 361–364. [Google Scholar]
- Pamula, T. Road Traffic Conditions Classification Based on Multilevel Filtering of Image Content Using Convolutional Neural Networks. IEEE Intell. Transp. Syst. Mag. 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Mandhare, P.A.; Kharat, V.; Patil, C.Y. Intelligent Road Traffic Control System for Traffic Congestion A Perspective. Int. J. Comput. Sci. Eng. 2018, 6, 908–915. [Google Scholar] [CrossRef]
- Tan, K.; Bremner, D.; Kernec, J.L.; Imran, M. Federated Machine Learning in Vehicular Networks: A Summary of Recent Applications. In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Fabian, P.; Rachedi, A.; Guéguen, C. Selection of Relays Based on the Classification of Mobility-type and Localized Network Metrics in the Internet of Vehicles. Trans. Emerg. Telecommun. Technol. 2021, 32, e4246. [Google Scholar] [CrossRef]
- Javed, M.A.; Zeadally, S.; Usman, M.; Sidhu, G.A.S. FASPM: Fuzzy Logic-based Adaptive Security Protocol for Multihop Data Dissemination in Intelligent Transport Systems. Trans. Emerg. Telecommun. Technol. 2017, 28, e3190. [Google Scholar] [CrossRef]
- Yun, K.; Yun, H.; Lee, S.; Oh, J.; Kim, M.; Lim, M.; Lee, J.; Kim, C.; Seo, J.; Choi, J. A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles. Electronics 2024, 13, 288. [Google Scholar] [CrossRef]
- Taha, A.-E.M. An IoT Architecture for Assessing Road Safety in Smart Cities. Wirel. Commun. Mobile Comput. 2018, 2018, 8214989. [Google Scholar] [CrossRef]
- Amorim, B.d.S.P.; Firmino, A.A.; Baptista, C.d.S.; Júnior, G.B.; Paiva, A.C.d.; Júnior, F.E.d.A. A Machine Learning Approach for Classifying Road Accident Hotspots. ISPRS Int. J. Geo-Inf. 2023, 12, 227. [Google Scholar] [CrossRef]
- Jyothi, N.; Patil, R. Enhanced Machine Learning Based Techniques for Security in Vehicular Ad-Hoc Networks. In Proceedings of the 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, 5–6 May 2023; pp. 386–393. [Google Scholar] [CrossRef]
- Marouane, H.; Dandoush, A.; Amour, L.; Erbad, A. A Review and a Tutorial of ML-Based MDS Technology within a VANET Context: From Data Collection to Trained Model Deployment. Authorea Preprints 2023. [Google Scholar] [CrossRef]
- Baccari, S.; Hadded, M.; Ghazzai, H.; Touati, H.; Elhadef, M. Anomaly Detection in Connected and Autonomous Vehicles: A Survey, Analysis, and Research Challenges. IEEE Access 2024, 12, 19250–19276. [Google Scholar] [CrossRef]
- Han, X.; Zhou, Y.; Chen, K.; Qiu, H.; Qiu, M.; Liu, Y.; Zhang, T. ADS-Lead: Lifelong Anomaly Detection in Autonomous Driving Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1039–1051. [Google Scholar] [CrossRef]
- Zekry, A.; Sayed, A.; Moussa, M.; Elhabiby, M. Anomaly Detection Using IoT Sensor-Assisted ConvLSTM Models for Connected Vehicles. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar]
- Bokaba, T.; Doorsamy, W.; Paul, B. Comparative Study of Machine Learning Classifiers for Modelling Road Traffic Accidents. Appl. Sci. 2022, 12, 828. [Google Scholar] [CrossRef]
- Würth, A.; Binois, M.; Goatin, P. Traffic Prediction by Combining Macroscopic Models and Gaussian Processes. 2023. Available online: https://hal.science/hal-04345140 (accessed on 8 April 2024).
- Sroczyński, A.; Czyżewski, A. Road Traffic Can Be Predicted by Machine Learning Equally Effectively as by Complex Microscopic Model. Sci. Rep. 2023, 13, 14523. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Qiao, Y.-L.; Sewall, J.; Lin, M.C. Differentiable Hybrid Traffic Simulation. ACM Trans. Graph. 2022, 41, 258:1–258:10. [Google Scholar] [CrossRef]
- Das, S.; Tsapakis, I. Interpretable Machine Learning Approach in Estimating Traffic Volume on Low-Volume Roadways. Int. J. Transp. Sci. Technol. 2020, 9, 76–88. [Google Scholar] [CrossRef]
- Xu, W.; Wei, H. Learning to Calibrate Hybrid Hyperparameters: A Study on Traffic Simulation. In Proceedings of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Orlando, FL, USA, 21–23 June 2023; pp. 144–147. [Google Scholar] [CrossRef]
- Niel, O. A Novel Algorithm Can Generate Data to Train Machine Learning Models in Conditions of Extreme Scarcity of Real World Data. arXiv 2023, arXiv:2305.00987. [Google Scholar]
- Shubhi; Singh, A.K. Wireless Sensor Network: A Survey. 2015. Available online: https://www.researchgate.net/publication/320385994_Wireless_Sensor_Networks_A_Survey (accessed on 8 April 2024).
- Das, A.; Desai, M.; Mugatkar, N.; Ponraj, A.S. Emergency and Traffic Congestion Avoidance Using Vehicle-to-Vehicle Communication; Thalmann, D., Subhashini, N., Mohanaprasad, K., Murugan, M.S.B., Eds.; Springer: Singapore, 2018; Volume 492, pp. 147–153. [Google Scholar]
- Yu, H.; Guo, M. An Efficient Freeway Traffic Information Monitoring Systems Based on Wireless Sensor Networks and Floating Vehicles. In Proceedings of the 2010 First International Conference on Pervasive Computing, Signal Processing and Applications, Harbin, China, 17–19 September 2010; pp. 1065–1068. [Google Scholar] [CrossRef]
- Qua, W. Compressed Sensing for Data Collection in Wireless Sensor Network. J. Transduct. Technol. 2014, 27, 1562–1567. [Google Scholar]
- Wang, H.; Ouyang, M.; Meng, Q.; Kong, Q. A Traffic Data Collection and Analysis Method Based on Wireless Sensor Network. J. Wirel. Com. Netw. 2020, 2020, 2. [Google Scholar] [CrossRef]
- Mednis, A.; Strazdins, G.; Liepins, M.; Gordjusins, A.; Selavo, L. RoadMic: Road Surface Monitoring Using Vehicular Sensor Networks with Microphones; Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E., Eds.; Springer: Berlin/Heidelberg, Germnay, 2010; Volume 88, pp. 417–429. [Google Scholar]
- Goliya, H.S. Data Collection and Modeling of Heterogeneous Traffic—A Review. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 1765–1767. [Google Scholar] [CrossRef]
- Hourdakis, J.; Michalopoulos, P.G.; Morris, T. Deployment of Wireless Mobile Detection and Surveillance for Data-Intensive Applications. Transp. Res. Rec. 2004, 1900, 140–148. [Google Scholar] [CrossRef]
- Manjusha, M.; Sunitha, V. A Review of Advanced Pavement Distress Evaluation Techniques Using Unmanned Aerial Vehicles. Int. J. Pavement Eng. 2023, 24, 2268796. [Google Scholar] [CrossRef]
- Park, S.-S.; Tran, V.-T.; Lee, D.-E. Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole Detection. Appl. Sci. 2021, 11, 11229. [Google Scholar] [CrossRef]
- Hidas, P.; Wagner, P. Review of Data Collection Methods for Microscopic Traffic Simulation. In Proceedings of the WCTR, Istanbul, Turkey, 4–8 July 2004; Institute of Transport Research: Berlin, Germany, 2004. [Google Scholar]
- Apeltauer, J.; Babinec, A.; Herman, D.; Apeltauer, T. Automatic vehicle trajectory extraction for traffic analysis from aerial Video data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 9–15. [Google Scholar] [CrossRef]
- Qasim, M.A.; Ali, Q.A.; Sahab, N.M.; Jaleel, R.A.; Zahra, M.M.A. Multimedia Imaging System of Data Collection and Antenna Alignment for Unmanned Aerial Vehicles Based Internet of Things. Fusion Pract. Appl. 2023, 12, 19–27. [Google Scholar] [CrossRef]
- Kornyei, L.; Horvath, Z.; Ruopp, A.; Kovacs, A.; Liszkai, B. Multi-Scale Modelling of Urban Air Pollution with Coupled Weather Forecast and Traffic Simulation on HPC Architecture. In Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Companion, Virtual Event, 20–22 January 2021; pp. 9–10. [Google Scholar] [CrossRef]
- Basnayake, C.; MacIver, A.; Lachapelle, G. A Gps-Based Calibration Tool for Microscopic Traffic Simulation Models. 2003. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9bd08e6f4e8579b7693e5b66e828b5bd90ae9a8f (accessed on 8 April 2024).
- Barsi, M.; Barsi, A. Building opendrive model from mobile mapping data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 9–14. [Google Scholar] [CrossRef]
- Oughton, E.J.; Russell, T.; Johnson, J.; Yardim, C.; Kusuma, J. Itmlogic: The Irregular Terrain Model by Longley and Rice. J. Open Source Softw. 2020, 5, 2266. [Google Scholar] [CrossRef]
- Savitha, B.G.; Murthy, R.S.; Jagadeesh, H.S.; Sathish, H.S.; Sundararajan, T. Study on Geometric Factors Influencing Saturation Flow Rate at Signalized Intersections under Heterogeneous Traffic Conditions. J. Transp. Technol. 2017, 07, 83–94. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, Y.; Zeng, J. Characterizing Heterogeneous Traffic Flow at a Slope Bottleneck via Cellular Automaton Model. IEEE Trans. Intell. Transport. Syst. 2023, 24, 6507–6516. [Google Scholar] [CrossRef]
- Ai, W.; Hu, J.; Liu, D. Bifurcation Analysis of Improved Traffic Flow Model on Curved Road. J. Comput. Nonlinear Dyn. 2023, 18, 071005. [Google Scholar] [CrossRef]
- Guido, G.; Shaffiee Haghshenas, S.; Shaffiee Haghshenas, S.; Vitale, A.; Astarita, V.; Park, Y.; Geem, Z.W. Evaluation of Contributing Factors Affecting Number of Vehicles Involved in Crashes Using Machine Learning Techniques in Rural Roads of Cosenza, Italy. Safety 2022, 8, 28. [Google Scholar] [CrossRef]
- Al-Bayati, A.H.; Shakoree, A.S.; Ramadan, Z.A. Factors Affecting Traffic Accidents Density on Selected Multilane Rural Highways. Civ. Eng. J. 2021, 7, 1183–1202. [Google Scholar] [CrossRef]
- Zakharov, D.; Magaril, E.; Rada, E. Sustainability of the Urban Transport System under Changes in Weather and Road Conditions Affecting Vehicle Operation. Sustainability 2018, 10, 2052. [Google Scholar] [CrossRef]
- Cui, Y.; Ge, S.S. Autonomous Vehicle Positioning with GPS in Urban Canyon Environments. IEEE Trans. Robot. Autom. 2003, 19, 15–25. [Google Scholar] [CrossRef]
- Meguro, J.; Murata, T.; Takiguchi, J.; Amano, Y.; Hashizume, T. GPS Multipath Mitigation for Urban Area Using Omnidirectional Infrared Camera. IEEE Trans. Intell. Transp. Syst. 2009, 10, 22–30. [Google Scholar] [CrossRef]
- Ji, Z.; Xie, Q. Bidirectional Mapping Trajectory Similarity Measurement Algorithm Based on Geohash Grid. In Proceedings of the 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), Changsha, China, 11–13 June 2021; pp. 281–285. [Google Scholar] [CrossRef]
- Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019, 31, 2346–2363. [Google Scholar] [CrossRef]
- Ostrowski, K.; Budzynski, M. Measures of Functional Reliability of Two-Lane Highways. Energies 2021, 14, 4577. [Google Scholar] [CrossRef]
- Cleveland, R. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. 1990. Available online: https://www.proquest.com/openview/cc5001e8a0978a6c029ae9a41af00f21/1?pq-origsite=gscholar%26cbl=105444 (accessed on 8 April 2024).
- Arjasakusuma, S.; Swahyu Kusuma, S.; Phinn, S. Evaluating Variable Selection and Machine Learning Algorithms for Estimating Forest Heights by Combining Lidar and Hyperspectral Data. ISPRS Int. J. Geo-Inf. 2020, 9, 507. [Google Scholar] [CrossRef]
- Martiello Mastelini, S.; Nakano, F.K.; Vens, C.; de Leon Ferreira de Carvalho, A.C.P. Online Extra Trees Regressor. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 6755–6767. [Google Scholar] [CrossRef]
- Kim, J.; Hwangbo, H.; Kim, S. An Empirical Study on Real-Time Data Analytics for Connected Cars: Sensor-Based Applications for Smart Cars. Int. J. Distrib. Sens. Netw. 2018, 14, 155014771875529. [Google Scholar] [CrossRef]
- Al-Ahmadi, H.; Hassan, H. Real-Time Simulation of Traffic Monitoring System in Smart City. 2020. Available online: https://www.semanticscholar.org/paper/Real-Time-Simulation-of-Traffic-Monitoring-System-Al-Ahmadi-Hassan/fbd7a10eda11b03614e3a319a867c2e2f8d7ebe7 (accessed on 8 April 2024).
- Mallikharjuna Rao, K.; Saikrishna, G.; Supriya, K. Data Preprocessing Techniques: Emergence and Selection towards Machine Learning Models—A Practical Review Using HPA Dataset. Multimed. Tools Appl. 2023, 82, 37177–37196. [Google Scholar] [CrossRef]
- Algiriyage, N.; Prasanna, R.; H Doyle, E.; Stock, K.; Johnston, D.; Punchihewa, M.; Jayawardhana, S. Towards Real-Time Traffic Flow. Estimation Using. YOLO and SORT from Surveillance Video Footage. 2021. Available online: https://www.researchgate.net/publication/353327177_Towards_Real-time_Traffic_Flow_Estimation_using_YOLO_and_SORT_from_Surveillance_Video_Footage (accessed on 8 April 2024).
- Barone, F.; Marrazzo, M.; Oton, C.J. Camera Calibration with Weighted Direct Linear Transformation and Anisotropic Uncertainties of Image Control Points. Sensors 2020, 20, 1175. [Google Scholar] [CrossRef] [PubMed]
- Dementhon, D.F.; Davis, L.S. Model-Based Object Pose in 25 Lines of Code. Int. J. Comput. Vis. 1995, 15, 123–141. [Google Scholar] [CrossRef]
- ISO 15031-5:2015; Road Vehicles—Communication between Vehicle and External Equipment for Emissions-Related Diagnostics. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/66368.html (accessed on 3 April 2024).
- Riffenburgh, R.H. Chapter 14—Tests on Variability and Distributions. In Statistics in Medicine, 3rd ed.; Riffenburgh, R.H., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 299–323. ISBN 978-0-12-384864-2. [Google Scholar]
- Patil, M.; Tulpule, P.; Midlam-Mohler, S.; Patil, M.; Tulpule, P.; Midlam-Mohler, S. An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Trained on SMTF data before calibration | 4.1787 | 24.2507 | 4.9245 | −6.9719 | 0.7595 | 1.4117 |
Trained on SMTF data after calibration | 0.0318 | 0.0189 | 0.1376 | 0.9938 | 0.0266 | 0.0076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopukhova, E.; Abdulnagimov, A.; Voronkov, G.; Grakhova, E. Machine Learning-Driven Calibration of Traffic Models Based on a Real-Time Video Analysis. Appl. Sci. 2024, 14, 4864. https://doi.org/10.3390/app14114864
Lopukhova E, Abdulnagimov A, Voronkov G, Grakhova E. Machine Learning-Driven Calibration of Traffic Models Based on a Real-Time Video Analysis. Applied Sciences. 2024; 14(11):4864. https://doi.org/10.3390/app14114864
Chicago/Turabian StyleLopukhova, Ekaterina, Ansaf Abdulnagimov, Grigory Voronkov, and Elizaveta Grakhova. 2024. "Machine Learning-Driven Calibration of Traffic Models Based on a Real-Time Video Analysis" Applied Sciences 14, no. 11: 4864. https://doi.org/10.3390/app14114864
APA StyleLopukhova, E., Abdulnagimov, A., Voronkov, G., & Grakhova, E. (2024). Machine Learning-Driven Calibration of Traffic Models Based on a Real-Time Video Analysis. Applied Sciences, 14(11), 4864. https://doi.org/10.3390/app14114864