The Importance of Micronutrient Adequacy in Obesity and the Potential of Microbiota Interventions to Support It
Abstract
:Featured Application
Abstract
1. Introduction
- Effects of micronutrient-deficient diet on obesity;
- Effects of obesity on micronutrient deficiency;
- Effects of micronutrient supplementation on weight management and metabolic health in obesity;
- Mechanisms used by microorganisms to impact the bioavailability of micronutrients;
- Effects of the interventions into microbiota on the micronutrient status of humans.
2. Methodology
3. Effects of Micronutrient-Deficient Diet on Obesity
4. Effects of Obesity on Micronutrient Deficiency
5. Effects of Micronutrient Supplementation on Weight Management and Metabolic Health in Obesity
5.1. Effects of Micronutrient Supplementation on Body Weight Reduction
5.2. Effects of Micronutrient Supplementation on Lipid Homeostasis
5.3. Effects of Micronutrient Supplementation on Glucose Homeostasis
5.4. Doses of Micronutrients That Were Found to Be Effective in Aiding Weight Loss and Metabolic Health
6. Mechanisms Used by Microorganisms to Impact the Bioavailability of Micronutrients
7. Effects of the Interventions into Microbiota on the Micronutrient Status of Humans
8. Conclusions
9. Recommendations for Further Research
- What is the effect of micronutrient supplementation on the lean and obese microbiome?
- What does the lean and obese microbiome do with micronutrients?
- What fraction of micronutrients that were exposed to obese and lean microbiome passes through the intestinal epithelium?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a Multisystem Disease: Trends in Obesity Rates and Obesity-Related Complications. Diabetes Obes. Metab. 2021, 23, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Okunogbe, A.; Nugent, R.; Spencer, G.; Ralston, J.; Wilding, J. Economic Impacts of Overweight and Obesity: Current and Future Estimates for Eight Countries. BMJ Glob. Health 2021, 6, e006351. [Google Scholar] [CrossRef] [PubMed]
- Via, M. The Malnutrition of Obesity: Micronutrient Deficiencies That Promote Diabetes. ISRN Endocrinol. 2012, 2012, 103472. [Google Scholar] [CrossRef] [PubMed]
- Roust, L.R.; DiBaise, J.K. Nutrient Deficiencies Prior to Bariatric Surgery. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 138. [Google Scholar] [CrossRef] [PubMed]
- Ciobârcă, D.M.; Cătoi, A.F.; Copăescu, C.; Miere, D.; Crişan, G. Nutritional Status Prior to Bariatric Surgery for Severe Obesity: A Review. Med. Pharm. Rep. 2022, 95, 24–30. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Milanta, C.; Agostinelli, M.; Todisco, C.F.; Bona, F.; Dolor, J.; La Mendola, A.; Tosi, M.; Zuccotti, G. Micronutrient Deficiency in Children and Adolescents with Obesity-A Narrative Review. Children 2023, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; di Filippo, L.; Facciorusso, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Casanueva, F.F.; Cavestro, G.M.; Chakhtoura, M.; et al. Vitamin D Status and Supplementation before and after Bariatric Surgery: Recommendations Based on a Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2023, 24, 1011–1029. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.-C. Consumption of Ultra-Processed Foods Is Associated with Obesity, Diabetes and Hypertension in Canadian Adults. Can. J. Public Health 2021, 112, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ding, J.; Liang, J.; Zhang, Y. Associations of Whole Grain and Refined Grain Consumption With Metabolic Syndrome. A Meta-Analysis of Observational Studies. Front. Nutr. 2021, 8, 695620. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yu, D.; Ju, L.; Cheng, X.; Zhao, L. Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients 2022, 14, 146. [Google Scholar] [CrossRef]
- Giménez-Legarre, N.; Miguel-Berges, M.L.; Flores-Barrantes, P.; Santaliestra-Pasías, A.M.; Moreno, L.A. Breakfast Characteristics and Its Association with Daily Micronutrients Intake in Children and Adolescents–A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3201. [Google Scholar] [CrossRef] [PubMed]
- Șerban, C.L.; Sima, A.; Hogea, C.M.; Chiriță-Emandi, A.; Perva, I.T.; Vlad, A.; Albai, A.; Nicolae, G.; Putnoky, S.; Timar, R.; et al. Assessment of Nutritional Intakes in Individuals with Obesity under Medical Supervision. A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 3036. [Google Scholar] [CrossRef] [PubMed]
- Damms-Machado, A.; Weser, G.; Bischoff, S.C. Micronutrient Deficiency in Obese Subjects Undergoing Low Calorie Diet. Nutr. J. 2012, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Zsálig, D.; Berta, A.; Tóth, V.; Szabó, Z.; Simon, K.; Figler, M.; Pusztafalvi, H.; Polyák, É. A Review of the Relationship between Gut Microbiome and Obesity. Appl. Sci. 2023, 13, 610. [Google Scholar] [CrossRef]
- Voland, L.; Le Roy, T.; Debédat, J.; Clément, K. Gut Microbiota and Vitamin Status in Persons with Obesity: A Key Interplay. Obes. Rev. 2022, 23, e13377. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, N.; Berweiler, V.; Wang, H.; Trajkovski, M. Intestinal Microbiota as a Route for Micronutrient Bioavailability. Curr. Opin. Endocr. Metab. Res. 2021, 20, 100285. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the Double Burden of Malnutrition and the Changing Nutrition Reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Luis Gómez-Urquiza, J.; Medina-Martínez, I.; González-Jiménez, E.; Schmidt-RioValle, J.; Rueda-Medina, B. Low Intakes of Vitamins C and A Are Associated with Obesity in Early Adulthood. Int. J. Vitam. Nutr. Res. 2022, 92, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-P.; Fang, H.-Y.; Li, M.-C. Relationship between Overweight and Obesity and Insufficient Micronutrient Intake: A Nationwide Study in Taiwan. J. Nutr. Sci. 2023, 12, e48. [Google Scholar] [CrossRef]
- Shatwan, I.M.; Almoraie, N.M. Correlation between Dietary Intake and Obesity Risk Factors among Healthy Adults. Clin. Nutr. Open Sci. 2022, 45, 32–41. [Google Scholar] [CrossRef]
- Tang, W.; Zhan, W.; Wei, M.; Chen, Q. Associations Between Different Dietary Vitamins and the Risk of Obesity in Children and Adolescents: A Machine Learning Approach. Front. Endocrinol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, H.; Zhang, Y.; Chen, L.; Tian, C.; Huang, B.; Chen, Y.; Ma, L. Associations of Dietary Antioxidant Micronutrients with the Prevalence of Obesity in Adults. Front. Nutr. 2023, 10, 1098761. [Google Scholar] [CrossRef] [PubMed]
- Amara, N.B.; Marcotorchino, J.; Tourniaire, F.; Astier, J.; Amiot, M.-J.; Darmon, P.; Landrier, J.-F. Multivitamin Restriction Increases Adiposity and Disrupts Glucose Homeostasis in Mice. Genes Nutr. 2014, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Safratowich, B.D.; Liu, Z.; Bukowski, M.R.; Ishaq, S.L. Adequacy of Calcium and Vitamin D Reduces Inflammation, β-Catenin Signaling, and Dysbiotic Parasutterela Bacteria in the Colon of C57BL/6 Mice Fed a Western-Style Diet. J. Nutr. Biochem. 2021, 92, 108613. [Google Scholar] [CrossRef] [PubMed]
- Trasino, S.E.; Tang, X.-H.; Jessurun, J.; Gudas, L.J. Obesity Leads to Tissue, but Not Serum Vitamin A Deficiency. Sci. Rep. 2015, 5, 15893. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Wu, D.; Smith, D.; Meydani, S.N.; Han, S.N. Lower Hepatic Iron Storage Associated with Obesity in Mice Can Be Restored by Decreasing Body Fat Mass through Feeding a Low-Fat Diet. Nutr. Res. 2016, 36, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Mallard, S.R.; Howe, A.S.; Houghton, L.A. Vitamin D Status and Weight Loss: A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Controlled Weight-Loss Trials. Am. J. Clin. Nutr. 2016, 104, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Geiker, N.R.W.; Veller, M.; Kjoelbaek, L.; Jakobsen, J.; Ritz, C.; Raben, A.; Astrup, A.; Lorenzen, J.K.; Larsen, L.H.; Bügel, S. Effect of Low Energy Diet for Eight Weeks to Adults with Overweight or Obesity on Folate, Retinol, Vitamin B12, D and E Status and the Degree of Inflammation: A Post Hoc Analysis of a Randomized Intervention Trial. Nutr. Metab. 2018, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Huck, C.J.; Johnston, C.S.; Beezhold, B.L.; Swan, P.D. Vitamin C Status and Perception of Effort during Exercise in Obese Adults Adhering to a Calorie-Reduced Diet. Nutrition 2013, 29, 42–45. [Google Scholar] [CrossRef]
- Keogh, J.B.; Cleanthous, X.; Wycherley, T.P.; Brinkworth, G.D.; Noakes, M.; Clifton, P.M. Increased Thiamine Intake May Be Required to Maintain Thiamine Status during Weight Loss in Patients with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2012, 98, e40–e42. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; López-Sobaler, A.M.; Navarro, A.R.; Bermejo, L.M.; Ortega, R.M.; Andrés, P. Vitamin B6 Status Improves in Overweight/Obese Women Following a Hypocaloric Diet Rich in Breakfast Cereals, and May Help in Maintaining Fat-Free Mass. Int. J. Obes. 2008, 32, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Mikalsen, S.M.; Bjørke-Monsen, A.-L.; Whist, J.E.; Aaseth, J. Improved Magnesium Levels in Morbidly Obese Diabetic and Non-Diabetic Patients After Modest Weight Loss. Biol. Trace Elem. Res. 2019, 188, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Subih, H.S.; Zueter, Z.; Obeidat, B.M.; Al-Qudah, M.A.; Janakat, S.; Hammoh, F.; Sharkas, G.; Bawadi, H.A. A High Weekly Dose of Cholecalciferol and Calcium Supplement Enhances Weight Loss and Improves Health Biomarkers in Obese Women. Nutr. Res. 2018, 59, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Alshwaiyat, N.M.; Ahmad, A.; Al-Jamal, H.A.N. Effect of Diet-Induced Weight Loss on Iron Status and Its Markers among Young Women with Overweight/Obesity and Iron Deficiency Anemia: A Randomized Controlled Trial. Front. Nutr. 2023, 10, 1155947. [Google Scholar] [CrossRef] [PubMed]
- Zavros, A.; Andreou, E.; Aphamis, G.; Bogdanis, G.C.; Sakkas, G.K.; Roupa, Z.; Giannaki, C.D. The Effects of Zinc and Selenium Co-Supplementation on Resting Metabolic Rate, Thyroid Function, Physical Fitness, and Functional Capacity in Overweight and Obese People under a Hypocaloric Diet: A Randomized, Double-Blind, and Placebo-Controlled Trial. Nutrients 2023, 15, 3133. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Aboul-Ela, Y.; Mennatallah, S. Serum Zinc Level before and after Low Carbohydrate Diet in Male and Female Overweight and Obese Ain Shams University Medical Students. Med. J. Cairo Univ. 2021, 89, 1961–1966. [Google Scholar] [CrossRef]
- Pham, P.-C.T.; Pham, P.-M.T.; Pham, S.V.; Miller, J.M.; Pham, P.-T.T. Hypomagnesemia in Patients with Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2007, 2, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Navarrete, J.M.; Fernández-Real, J.M. Iron: The Silent Culprit in Your Adipose Tissue. Obes. Rev. 2024, 25, e13647. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, N.U.; El-Mallah, C.; Herter-Aeberli, I.; Bissani, N.; Wehbe, N.; Obeid, O.; Zimmermann, M.B. The Effect of Central Obesity on Inflammation, Hepcidin, and Iron Metabolism in Young Women. Int. J. Obes. 2020, 44, 1291–1300. [Google Scholar] [CrossRef]
- Berton, P.F.; Gambero, A. Hepcidin and Inflammation Associated with Iron Deficiency in Childhood Obesity—A Systematic Review. J. Pediatr. 2024, 100, 124–131. [Google Scholar] [CrossRef]
- Habib, S.A.; Saad, E.A.; Elsharkawy, A.A.; Attia, Z.R. Pro-Inflammatory Adipocytokines, Oxidative Stress, Insulin, Zn and Cu: Interrelations with Obesity in Egyptian Non-Diabetic Obese Children and Adolescents. Adv. Med. Sci. 2015, 60, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, S.; Toupchian, O.; Jayedi, A.; Meyre, D.; Tam, V.; Soltani, S. Zinc Supplementation and Body Weight: A Systematic Review and Dose–Response Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 398–411. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.R.; Hausman, D.B.; Kauwell, G.P.A.; Sokolow, A.; Tackett, R.L.; Rathbun, S.L.; Bailey, L.B. Obesity Affects Short-Term Folate Pharmacokinetics in Women of Childbearing Age. Int. J. Obes. 2013, 37, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Köse, S.; Sözlü, S.; Bölükbaşi, H.; Ünsal, N.; Gezmen-Karadağ, M. Obesity Is Associated with Folate Metabolism. Int. J. Vitam. Nutr. Res. 2020, 90, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Sousa Guerreiro, C.; Cravo, M.; Costa, A.R.; Miranda, A.; Tavares, L.; Moura-Santos, P.; MarquesVidal, P.; Nobre Leitão, C. A Comprehensive Approach to Evaluate Nutritional Status in Crohn’s Patients in the Era of Biologic Therapy: A Case-Control Study. Am. J. Gastroenterol. 2007, 102, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- van Rutte, P.W.J.; Aarts, E.O.; Smulders, J.F.; Nienhuijs, S.W. Nutrient Deficiencies Before and After Sleeve Gastrectomy. Obes. Surg. 2014, 24, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Peana, M.; Dosa, A.; Piscopo, S.; Gasmi Benahmed, A.; Costea, D.O. Micronutrients Deficiences in Patients after Bariatric Surgery. Eur. J. Nutr. 2022, 61, 55–67. [Google Scholar] [CrossRef]
- Best, K.P.; Gomersall, J.; Makrides, M. Prenatal Nutritional Strategies to Reduce the Risk of Preterm Birth. Ann. Nutr. Metab. 2021, 76, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.C.Q.; Lo, C.C.W. Multivitamin Use May Lower Risk of Preeclampsia: A Meta-analysis. Acta Obstet. Gynecol. Scand. 2022, 101, 1174. [Google Scholar] [CrossRef]
- Keats, E.C.; Haider, B.A.; Tam, E.; Bhutta, Z.A. Multiple-micronutrient Supplementation for Women during Pregnancy. Cochrane Database Syst. Rev. 2019, 3, CD004905. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, Y.K.; Lee, J.; Kim, E. Could Nutrient Supplements Provide Additional Glycemic Control in Diabetes Management? A Systematic Review and Meta-Analysis of Randomized Controlled Trials of as an Add-on Nutritional Supplementation Therapy. Arch. Pharm. Res. 2022, 45, 185–204. [Google Scholar] [CrossRef]
- Lee, C.Y. Effects of Dietary Vitamins on Obesity-Related Metabolic Parameters. J. Nutr. Sci. 2023, 12, e47. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yu, J.; Xu, H.; Zhou, Y.; Li, H.; Yin, S.; Xu, D.; Wang, Y.; Xia, H.; Liao, W.; et al. Comparative Effects of Vitamin and Mineral Supplements in the Management of Type 2 Diabetes in Primary Care: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2023, 188, 106647. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qin, L.; Zheng, J.; Tong, L.; Lu, W.; Lu, C.; Sun, J.; Fan, B.; Wang, F. Research Progress on the Relationship between Vitamins and Diabetes: Systematic Review. Int. J. Mol. Sci. 2023, 24, 16371. [Google Scholar] [CrossRef] [PubMed]
- Emami, M.R.; Jamshidi, S.; Zarezadeh, M.; Khorshidi, M.; Olang, B.; Sajadi Hezaveh, Z.; Sohouli, M.; Aryaeian, N. Can Vitamin E Supplementation Affect Obesity Indices? A Systematic Review and Meta-Analysis of Twenty-Four Randomized Controlled Trials. Clin. Nutr. 2021, 40, 3201–3209. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.; Falahi, E.; Barakatun-Nisak, M.Y.; Hanipah, Z.N.; Redzwan, S.M.; Yusof, L.M.; Gheitasvand, M.; Rezaie, F. Systematic Review and Meta-Analyses of Vitamin E (Alpha-Tocopherol) Supplementation and Blood Lipid Parameters in Patients with Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102158. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Nazarian, B.; Yousefi, M.; Anjom-Shoae, J.; Rasekhi, H.; Sadeghi, O. Effect of Vitamin E Intake on Glycemic Control and Insulin Resistance in Diabetic Patients: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. J. 2023, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Vajdi, M.; Khajeh, M.; Safaei, E.; Moeinolsadat, S.; Mousavi, S.; Seyedhosseini-Ghaheh, H.; Abbasalizad-Farhangi, M.; Askari, G. Effects of Chromium Supplementation on Body Composition in Patients with Type 2 Diabetes: A Dose-Response Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Trace Elem. Med. Biol. 2024, 81, 127338. [Google Scholar] [CrossRef] [PubMed]
- Vajdi, M.; Musazadeh, V.; Karimi, A.; Heidari, H.; Tarrahi, M.J.; Askari, G. Effects of Chromium Supplementation on Lipid Profile: An Umbrella of Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2023, 201, 3658–3669. [Google Scholar] [CrossRef]
- Asbaghi, O.; Fatemeh, N.; Mahnaz, R.K.; Ehsan, G.; Elham, E.; Behzad, N.; Damoon, A.-L.; Amirmansour, A.N. Effects of Chromium Supplementation on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2020, 161, 105098. [Google Scholar] [CrossRef]
- Tarrahi, M.J.; Tarrahi, M.A.; Rafiee, M.; Mansourian, M. The Effects of Chromium Supplementation on Lipidprofile in Humans: A Systematic Review and Meta-Analysis Ofrandomized Controlled Trials. Pharmacol. Res. 2021, 164, 105308. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Vieira, D.A.; Hermes Sales, C.; Galvão Cesar, C.L.; Marchioni, D.M.; Fisberg, R.M. Influence of Haem, Non-Haem, and Total Iron Intake on Metabolic Syndrome and Its Components: A Population-Based Study. Nutrients 2018, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- d’Ávila Ferreira, E.; Hatta, M.; Takeda, Y.; Horikawa, C.; Takeuchi, M.; Kato, N.; Yokoyama, H.; Kurihara, Y.; Iwasaki, K.; Fujihara, K.; et al. Higher Iron Intake Is Independently Associated with Obesity in Younger Japanese Type-2 Diabetes Mellitus Patients. Nutrients 2022, 14, 211. [Google Scholar] [CrossRef]
- Shahinfar, H.; Jayedi, A.; Shab-Bidar, S. Dietary Iron Intake and the Risk of Type 2 Diabetes: A Systematic Review and Dose–Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2022, 61, 2279–2296. [Google Scholar] [CrossRef]
- Hunnicutt, J.; He, K.; Xun, P. Dietary Iron Intake and Body Iron Stores Are Associated with Risk of Coronary Heart Disease in a Meta-Analysis of Prospective Cohort Studies. J. Nutr. 2014, 144, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; An, P.; Wang, H.; Wang, X.; Shen, X.; Li, X.; Min, J.; Liu, S.; Wang, F. Dietary Intake of Heme Iron and Risk of Cardiovascular Disease: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Nunes, A.; Jakszyn, P.; Agudo, A. Iron and Cancer Risk—A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Cancer Epidemiol. Biomark. Prev. 2014, 23, 12–31. [Google Scholar] [CrossRef]
- Kataria, Y.; Wu, Y.; Horskjær, P.D.H.; Mandrup-Poulsen, T.; Ellervik, C. Iron Status and Gestational Diabetes—A Meta-Analysis. Nutrients 2018, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, J.; Li, P. Ferritin and Iron Supplements in Gestational Diabetes Mellitus: Less or More? Eur. J. Nutr. 2024, 63, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, N.; Yokoyama, Y.; Taoka, H.; Nagano, U.; Hosoda, S.; Taworntawat, T.; Nakamura, A.; Ogawa, Y.; Tsubota, K.; Watanabe, M. Iron Supplementation Regulates the Progression of High Fat Diet Induced Obesity and Hepatic Steatosis via Mitochondrial Signaling Pathways. Sci. Rep. 2021, 11, 10753. [Google Scholar] [CrossRef]
- Van Buiten, C.B.; Wu, G.; Lam, Y.Y.; Zhao, L.; Raskin, I. Elemental Iron Modifies the Redox Environment of the Gastrointestinal Tract: A Novel Therapeutic Target and Test for Metabolic Syndrome. Free Radic. Biol. Med. 2021, 168, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Jia, L.; Xiong, Q.; Du, H. Iron Overload Protects from Obesity by Ferroptosis. Foods 2021, 10, 1787. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, M.A.; Keshavarz, S.A.; Eshraghian, M.; Ostadrahimi, A.; Saboor-Yaraghi, A.A. Vitamin a Supplementation, Serum Lipids, Liver Enzymes and C-Reactive Protein Concentrations in Obese Women of Reproductive Age. Ann. Clin. Biochem. 2013, 50, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Perna, S. Is Vitamin D Supplementation Useful for Weight Loss Programs? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina 2019, 55, 368. [Google Scholar] [CrossRef]
- Farag, H.A.M.; Hosseinzadeh-Attar, M.J.; Muhammad, B.A.; Esmaillzadeh, A.; El Bilbeisi, A.H. Effects of Vitamin C Supplementation with and without Endurance Physical Activity on Components of Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin. Nutr. Exp. 2019, 26, 23–33. [Google Scholar] [CrossRef]
- González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Ramírez-Ramírez, V.; Ramos-Zavala, M.G. Effect of Thiamine Administration on Metabolic Profile, Cytokines and Inflammatory Markers in Drug-Naïve Patients with Type 2 Diabetes. Eur. J. Nutr. 2011, 50, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Haidari, F.; Mohammadshahi, M.; Zarei, M.; Haghighizadeh, M.H.; Mirzaee, F. The Effect of Pyridoxine Hydrochloride Supplementation on Leptin, Adiponectin, Glycemic Indices, and Anthropometric Indices in Obese and Overweight Women. Clin. Nutr. Res. 2021, 10, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Gholizadeh, E.; Sadrmanesh, O.; Tajpour, S.; Yarizadeh, H.; Zamani, B.; Sohrabi, Z. The Effect of Folic Acid Supplementation on Body Weight and Body Mass Index: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. ESPEN 2023, 53, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Talari, H.R.; Molaqanbari, M.R.; Mokfi, M.; Taghizadeh, M.; Bahmani, F.; Tabatabaei, S.M.H.; Sharifi, N. The Effects of Vitamin B12 Supplementation on Metabolic Profile of Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Sci. Rep. 2022, 12, 14047. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.; Mozaffari, H.; Jafari, A.; Ghanbari, M.; Darooghegi Mofrad, M. The Effects of Magnesium Supplementation on Obesity Measures in Adults: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 2921–2937. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Perry, R.; Zhang, J.; Ernst, E. Efficacy of Calcium Supplementation for Management of Overweight and Obesity: Systematic Review of Randomized Clinical Trials. Nutr. Rev. 2011, 69, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Noshadian, M.; Jamilian, M.; Chamani, M.; Mohammadi, S.; Asemi, Z. The Effects of a Novel Combination of Selenium and Probiotic on Weight Loss, Glycemic Control and Markers of Cardio-Metabolic Risk in Women with Polycystic Ovary Syndrome. J. Funct. Foods 2018, 46, 329–334. [Google Scholar] [CrossRef]
- Navas-Carretero, S.; Cuervo, M.; Abete, I.; Zulet, M.A.; Martínez, J.A. Frequent Consumption of Selenium-Enriched Chicken Meat by Adults Causes Weight Loss and Maintains Their Antioxidant Status. Biol. Trace Elem. Res. 2011, 143, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, E.; Manso, J.; Negro, I.; Censi, S.; Serra, R.; Busetto, L.; Vettor, R.; Plebani, M.; Pezzani, R.; Nacamulli, D.; et al. Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. Int. J. Endocrinol. 2020, 2020, e4802739. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Fan, C.; Lu, Y.; Qi, K. Effects of Calcium Supplementation on Body Weight: A Meta-Analysis. Am. J. Clin. Nutr. 2016, 104, 1263–1273. [Google Scholar] [CrossRef]
- Booth, A.O.; Huggins, C.E.; Wattanapenpaiboon, N.; Nowson, C.A. Effect of Increasing Dietary Calcium through Supplements and Dairy Food on Body Weight and Body Composition: A Meta-Analysis of Randomised Controlled Trials. Br. J. Nutr. 2015, 114, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Sochol, K.M.; Johns, T.S.; Buttar, R.S.; Randhawa, L.; Sanchez, E.; Gal, M.; Lestrade, K.; Merzkani, M.; Abramowitz, M.K.; Mossavar-Rahmani, Y.; et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2237. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, M.; Hassanizadeh, S.; Pourteymour Fard Tabrizi, F.; Hassanizadeh, R.; Vajdi, M.; Askari, G. Effect of Zinc Supplementation on Lipid Profile and Body Composition in Patients with Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis. Biol. Trace Elem. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Wang, Y.; Liu, Y.; Peng, C.; He, W.; Sun, X. Efficacy of Vitamin D Supplementation on Child and Adolescent Overweight/Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Pediatr. 2023, 182, 255–264. [Google Scholar] [CrossRef]
- Namkhah, Z.; Ashtary-Larky, D.; Naeini, F.; Clark, C.C.T.; Asbaghi, O. Does Vitamin C Supplementation Exert Profitable Effects on Serum Lipid Profile in Patients with Type 2 Diabetes? A Systematic Review and Dose-Response Meta-Analysis. Pharmacol. Res. 2021, 169, 105665. [Google Scholar] [CrossRef]
- Muley, A.; Fernandez, R.; Green, H.; Muley, P. Effect of Thiamine Supplementation on Glycaemic Outcomes in Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. BMJ Open 2022, 12, e059834. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Ashtary-Larky, D.; Bagheri, R.; Nazarian, B.; Pourmirzaei Olyaei, H.; Rezaei Kelishadi, M.; Nordvall, M.; Wong, A.; Dutheil, F.; Naeini, A.A. Beneficial Effects of Folic Acid Supplementation on Lipid Markers in Adults: A GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis of Data from 21,787 Participants in 34 Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 8435–8453. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Simental-Mendía, M.; Sahebkar, A.; Rodríguez-Morán, M.; Guerrero-Romero, F. Effect of Magnesium Supplementation on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Pharmacol. 2017, 73, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Derakhshandeh-Rishehri, S.-M.; Ghobadi, S.; Akhlaghi, M.; Faghih, S. The Effect of Calcium Supplement Intake on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 2093–2102. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, M.R.; Ashtary-Larky, D.; Davoodi, S.H.; Clark, C.C.T.; Asbaghi, O. The Effects of Selenium Supplementation on Blood Lipids and Blood Pressure in Adults: A Systematic Review and Dose-Response Meta-Analysis of Randomized Control Trials. J. Trace Elem. Med. Biol. 2022, 74, 127046. [Google Scholar] [CrossRef]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc Status Is Associated with Inflammation, Oxidative Stress, Lipid, and Glucose Metabolism. J. Physiol. Sci. 2018, 68, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Orsso, C.E.; Colin-Ramirez, E.; Field, C.J.; Madsen, K.L.; Prado, C.M.; Haqq, A.M. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients 2020, 12, 2735. [Google Scholar] [CrossRef]
- Fontenelle, L.C.; Cardoso de Araújo, D.S.; da Cunha Soares, T.; Clímaco Cruz, K.J.; Henriques, G.S.; Marreiro, D.d.N. Nutritional Status of Selenium in Overweight and Obesity: A Systematic Review and Meta-Analysis. Clin. Nutr. 2022, 41, 862–884. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Z.; Liu, S.; Aluo, Z.; Zhang, L.; Yu, L.; Li, Y.; Song, Z.; Zhou, L. Zinc Supplementation Alleviates Lipid and Glucose Metabolic Disorders Induced by a High-Fat Diet. J. Agric. Food Chem. 2020, 68, 5189–5200. [Google Scholar] [CrossRef]
- Gonzalez, J.T.; Rumbold, P.L.S.; Stevenson, E.J. Effect of Calcium Intake on Fat Oxidation in Adults: A Meta-Analysis of Randomized, Controlled Trials. Obes. Rev. 2012, 13, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Conceição, E.P.S.; Moura, E.G.; Manhães, A.C.; Carvalho, J.C.; Nobre, J.L.; Oliveira, E.; Lisboa, P.C. Calcium Reduces Vitamin D and Glucocorticoid Receptors in the Visceral Fat of Obese Male Rats. J. Endocrinol. 2016, 230, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, J.; Sepidarkish, M.; Namazi, N.; Shokri, F.; Yavari, M.; Fazelian, S.; Khorshidi, M.; Shidfar, F. Impact of Dietary Calcium Supplement on Circulating Lipoprotein Concentrations and Atherogenic Indices in Overweight and Obese Individuals: A Systematic Review. J. Diet. Suppl. 2019, 16, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Ashok, T.; Puttam, H.; Tarnate, V.C.A.; Jhaveri, S.; Avanthika, C.; Trejo Treviño, A.G.; Sl, S.; Ahmed, N.T. Role of Vitamin B12 and Folate in Metabolic Syndrome. Cureus 2021, 13, e18521. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; You, D.; Wang, H.; Yang, Y.; Zhang, D.; Lv, J.; Luo, S.; Liao, R.; Ma, L. Association between Homocysteine and Obesity: A Meta-Analysis. J. Evid.-Based Med. 2021, 14, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.; Bandyopadhyay, D.; Patro, B.K.; Khan, S.; Naik, S. Folic Acid and Vitamin B12 Supplementation in Subjects with Type 2 Diabetes Mellitus: A Multi-Arm Randomized Controlled Clinical Trial. Complement. Ther. Med. 2020, 53, 102526. [Google Scholar] [CrossRef] [PubMed]
- Mrowicka, M.; Mrowicki, J.; Dragan, G.; Majsterek, I. The Importance of Thiamine (Vitamin B1) in Humans. Biosci. Rep. 2023, 43, BSR20230374. [Google Scholar] [CrossRef] [PubMed]
- Kalyesubula, M.; Mopuri, R.; Asiku, J.; Rosov, A.; Yosefi, S.; Edery, N.; Bocobza, S.; Moallem, U.; Dvir, H. High-Dose Vitamin B1 Therapy Prevents the Development of Experimental Fatty Liver Driven by Overnutrition. Dis. Models Mech. 2021, 14, dmm048355. [Google Scholar] [CrossRef] [PubMed]
- Yousefi Rad, E.; Falahi, E.; Saboori, S.; Asbaghi, O.; Birjandi, M.; Hesami, S.; Aghayan, M. Effect of Selenium Supplementation on Lipid Profile Levels: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Obes. Med. 2019, 15, 100113. [Google Scholar] [CrossRef]
- Canas, J.A. Mixed Carotenoid Supplementation and Dysmetabolic Obesity: Gaps in Knowledge. Int. J. Food Sci. Nutr. 2021, 72, 653–659. [Google Scholar] [CrossRef]
- Yadav, A.S.; Isoherranen, N.; Rubinow, K.B. Vitamin A Homeostasis and Cardiometabolic Disease in Humans: Lost in Translation? J. Mol. Endocrinol. 2022, 69, R95–R108. [Google Scholar] [CrossRef] [PubMed]
- Licata, A.; Zerbo, M.; Como, S.; Cammilleri, M.; Soresi, M.; Montalto, G.; Giannitrapani, L. The Role of Vitamin Deficiency in Liver Disease: To Supplement or Not Supplement? Nutrients 2021, 13, 4014. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Du, M. Increasing Adipocyte Number and Reducing Adipocyte Size: The Role of Retinoids in Adipose Tissue Development and Metabolism. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose Tissue Remodeling and Obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Nosratabadi, S.; Ashtary-Larky, D.; Hosseini, F.; Namkhah, Z.; Mohammadi, S.; Salamat, S.; Nadery, M.; Yarmand, S.; Zamani, M.; Wong, A.; et al. The Effects of Vitamin C Supplementation on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102824. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Ashtary-Larky, D.; Bagheri, R.; Moosavian, S.P.; Olyaei, H.P.; Nazarian, B.; Rezaei Kelishadi, M.; Wong, A.; Candow, D.G.; Dutheil, F.; et al. Folic Acid Supplementation Improves Glycemic Control for Diabetes Prevention and Management: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2355. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Sahebkar, A.; Rodríguez-Morán, M.; Guerrero-Romero, F. A Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effects of Magnesium Supplementation on Insulin Sensitivity and Glucose Control. Pharmacol. Res. 2016, 111, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Vajdi, M.; Hassanizadeh, S.; Gholami, Z.; Bagherniya, M. Selenium Supplementation Effect on Glycemic Control: A GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2023, 195, 106888. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Y.; Hung, K.-C.; Chuang, M.-H.; Chang, R.; Chen, R.-Y.; Wang, F.-W.; Wu, J.-Y.; Chen, J.-Y. Effect of Zinc Supplementation on Blood Sugar Control in the Overweight and Obese Population: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Obes. Res. Clin. Pract. 2023, 17, 308–317. [Google Scholar] [CrossRef]
- American Diabetes Association 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Melmed, S.; Koenig, R.; Rosen, C.J.; Auchus, R.J.; Goldfine, A.B. Williams Textbook of Endocrinology, 14 Edition: South Asia Edition, 2 Vol Set—E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020; ISBN 978-81-312-6216-0. [Google Scholar]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin Resistance (HOMA-IR) Cut-off Values and the Metabolic Syndrome in a General Adult Population: Effect of Gender and Age: EPIRCE Cross-Sectional Study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Khosroshahi, M.Z.; Kashkooli, S.; Abbasnezhad, A. Effect of Calcium-Vitamin D Co-Supplementation on Insulin, Insulin Sensitivity, and Glycemia: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Horm. Metab. Res. 2019, 51, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Watutantrige-Fernando, S.; Luchini, C.; Solmi, M.; Sartore, G.; Sergi, G.; Manzato, E.; Barbagallo, M.; Maggi, S.; Stubbs, B. Effect of Magnesium Supplementation on Glucose Metabolism in People with or at Risk of Diabetes: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Eur. J. Clin. Nutr. 2016, 70, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Voma, C.; Romani, A.M.P.; Voma, C.; Romani, A.M.P. Role of Magnesium in the Regulation of Hepatic Glucose Homeostasis. In Glucose Homeostasis; IntechOpen: Rijeka, Croatia, 2014; ISBN 978-953-51-1618-9. [Google Scholar]
- Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef] [PubMed]
- Lattef Gossa Al-Saadde, D.; Haider, A.M.; Ali, A.; Abdu Musad Saleh, E.; Turki Jalil, A.; Abdulelah, F.M.; Romero-Parra, R.M.; Tayyib, N.A.; Ramírez-Coronel, A.A.; Alkhayyat, A.S. The Role of Chromium Supplementation in Cardiovascular Risk Factors: A Comprehensive Reviews of Putative Molecular Mechanisms. Heliyon 2023, 9, e19826. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, S.M.; Vijaya Kumar, P.; Giridharan, N.V.; Vajreswari, A. Vitamin A Improves Insulin Sensitivity by Increasing Insulin Receptor Phosphorylation through Protein Tyrosine Phosphatase 1B Regulation at Early Age in Obese Rats of WNIN/Ob Strain. Diabetes Obes. Metab. 2011, 13, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Kang, Y.-R.; Choi, H.-Y.; Lee, J.-Y.; Oh, J.-B.; Kim, J.S.; Kim, Y.-C.; Lee, K.W.; Kwon, Y.-I. Postprandial Anti-Hyperglycemic Effect of Vitamin B6 (Pyridoxine) Administration in Healthy Individuals. Food Sci. Biotechnol. 2019, 28, 907–911. [Google Scholar] [CrossRef]
- Dawood, M.H.; Abdulridha, M.K.; Qasim, H.S. Assessing Pyridoxine Adjuvant Therapy Effects on Blood Glucose Levels in Type 2 Diabetes: A Randomized Clinical Trial. J. Med. Life 2023, 16, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- EFSA. DRV Finder. Available online: https://www.efsa.europa.eu/en/interactive-pages/drvs (accessed on 2 December 2020).
- Institute of Medicine (US). Panel on Micronutrients Chromium. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- Reif, B.M.; Murray, B.P. Chromium Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; Food and Nutrition Board; National Academies Press: Washington, DC, USA, 1998; ISBN 978-0-309-06554-2. [Google Scholar]
- Institute of Medicine (US). Panel on Dietary Antioxidants and Related Compounds Summary. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- European Food Safety Authority. Overview on Tolerable Upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Available online: https://www.efsa.europa.eu/sites/default/files/assets/UL_Summary_tables.pdf (accessed on 9 February 2024).
- Said, E.; Mousa, S.; Fawzi, M.; Sabry, N.A.; Farid, S. Combined Effect of High-Dose Vitamin A, Vitamin E Supplementation, and Zinc on Adult Patients with Diabetes: A Randomized Trial. J. Adv. Res. 2021, 28, 27–33. [Google Scholar] [CrossRef]
- Bora, S.A.; Kennett, M.J.; Smith, P.B.; Patterson, A.D.; Cantorna, M.T. The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23. Front. Immunol. 2018, 9, 408. [Google Scholar] [CrossRef]
- Reddy, B.S.; Pleasants, J.R.; Wostmann, B.S. Effect of Intestinal Microflora on Iron and Zinc Metabolism, and on Activities of Metalloenzymes in Rats. J. Nutr. 1972, 102, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E. Are Probiotics the New Calcium and Vitamin D for Bone Health? Curr. Osteoporos. Rep. 2020, 18, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.-Z.; Chen, H.-Q.; Liang, Y.; Xia, Y.; Yang, Y.-Z.; Yang, J.; Zhang, J.-D.; Wang, S.-H.; Liu, J.; Qin, H.-L. Combined Probiotic Bacteria Promotes Intestinal Epithelial Barrier Function in Interleukin-10-Gene-Deficient Mice. World J. Gastroenterol. 2014, 20, 4636–4647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; He, F.; Li, L.; Guo, L.; Zhang, B.; Yu, S.; Zhao, W. Bioavailability Based on the Gut Microbiota: A New Perspective. Microbiol. Mol. Biol. Rev. 2020, 84, e00072-19. [Google Scholar] [CrossRef] [PubMed]
- Degnan, P.H.; Taga, M.E.; Goodman, A.L. Vitamin B12 as a Modulator of Gut Microbial Ecology. Cell Metab. 2014, 20, 769–778. [Google Scholar] [CrossRef]
- Pompei, A.; Cordisco, L.; Amaretti, A.; Zanoni, S.; Matteuzzi, D.; Rossi, M. Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl. Environ. Microbiol. 2007, 73, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Nabokina, S.M.; Said, H.M. A High-Affinity and Specific Carrier-Mediated Mechanism for Uptake of Thiamine Pyrophosphate by Human Colonic Epithelial Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G389–G395. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M.; Ortiz, A.; Moyer, M.P.; Yanagawa, N. Riboflavin Uptake by Human-Derived Colonic Epithelial NCM460 Cells. Am. J. Physiol. Cell Physiol. 2000, 278, C270–C276. [Google Scholar] [CrossRef]
- Srinivasan, K.; Buys, E.M. Insights into the Role of Bacteria in Vitamin A Biosynthesis: Future Research Opportunities. Crit. Rev. Food Sci. Nutr. 2019, 59, 3211–3226. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Zhao, J.; Xu, H.; Hou, Q.; Zhang, H. Lactobacillus Casei Zhang and Vitamin K2 Prevent Intestinal Tumorigenesis in Mice via Adiponectin-Elevated Different Signaling Pathways. Oncotarget 2017, 8, 24719–24727. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Liu, A.B.; Lee, M.-J.; Xie, P.; Lin, Y.; Yang, C.S. Effects of Antibiotics on Degradation and Bioavailability of Different Vitamin E Forms in Mice. BioFactors 2019, 45, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.T.; Foley, A.L.; Engelke, J.A.; Suttie, J.W. Conversion of Dietary Phylloquinone to Tissue Menaquinone-4 in Rats Is Not Dependent on Gut Bacteria. J. Nutr. 1998, 128, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.S.; Sabui, S.; Moradi, H.; Marchant, J.S.; Said, H.M. Inhibition of Intestinal Ascorbic Acid Uptake by Lipopolysaccharide Is Mediated via Transcriptional Mechanisms. Biochim. Biophys. Acta Biomembr. 2018, 1860, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Seyoum, Y.; Baye, K.; Humblot, C. Iron Homeostasis in Host and Gut Bacteria—A Complex Interrelationship. Gut Microbes 2021, 13, 1874855. [Google Scholar] [CrossRef] [PubMed]
- Tahiri, M.; Tressol, J.C.; Arnaud, J.; Bornet, F.; Bouteloup-Demange, C.; Feillet-Coudray, C.; Ducros, V.; Pépin, D.; Brouns, F.; Rayssiguier, A.M.; et al. Five-Week Intake of Short-Chain Fructo-Oligosaccharides Increases Intestinal Absorption and Status of Magnesium in Postmenopausal Women. J. Bone Miner. Res. 2001, 16, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Sewell, A.K.; Han, M.; Qi, B. An Unexpected Benefit from E. coli: How Enterobactin Benefits Host Health. Microb. Cell 2018, 5, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Mogna, L.; Nicola, S.; Pane, M.; Lorenzini, P.; Strozzi, G.; Mogna, G. Selenium and Zinc Internalized by Lactobacillus Buchneri Lb26 (DSM 16341) and Bifidobacterium Lactis Bb1 (DSM 17850): Improved Bioavailability Using a New Biological Approach. J. Clin. Gastroenterol. 2012, 46 (Suppl. 1), S41–S45. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A.-S.; Önning, G.; Engström, N.; Scheers, N. Iron Supplements Containing Lactobacillus Plantarum 299v Increase Ferric Iron and Up-Regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures. Nutrients 2018, 10, 1949. [Google Scholar] [CrossRef]
- González, A.; Gálvez, N.; Martín, J.; Reyes, F.; Pérez-Victoria, I.; Dominguez-Vera, J.M. Identification of the Key Excreted Molecule by Lactobacillus Fermentum Related to Host Iron Absorption. Food Chem. 2017, 228, 374–380. [Google Scholar] [CrossRef]
- Bielik, V.; Kolisek, M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int. J. Mol. Sci. 2021, 22, 6803. [Google Scholar] [CrossRef] [PubMed]
- Barkhidarian, B.; Roldos, L.; Iskandar, M.M.; Saedisomeolia, A.; Kubow, S. Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. Nutrients 2021, 13, 3001. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Gnoni, A.; De Vito, D.; Dipalma, G.; Cantore, S.; Gargiulo Isacco, C.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A.; et al. Effect of Probiotics on the Occurrence of Nutrition Absorption Capacities in Healthy Children: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8645–8657. [Google Scholar] [CrossRef] [PubMed]
- Vonderheid, S.C.; Tussing-Humphreys, L.; Park, C.; Pauls, H.; OjiNjideka Hemphill, N.; LaBomascus, B.; McLeod, A.; Koenig, M.D. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients 2019, 11, 2938. [Google Scholar] [CrossRef] [PubMed]
- Whisner, C.M.; Martin, B.R.; Nakatsu, C.H.; McCabe, G.P.; McCabe, L.D.; Peacock, M.; Weaver, C.M. Soluble Maize Fibre Affects Short-Term Calcium Absorption in Adolescent Boys and Girls: A Randomised Controlled Trial Using Dual Stable Isotopic Tracers. Br. J. Nutr. 2014, 112, 446–456. [Google Scholar] [CrossRef]
- Whisner, C.M.; Martin, B.R.; Nakatsu, C.H.; Story, J.A.; MacDonald-Clarke, C.J.; McCabe, L.D.; McCabe, G.P.; Weaver, C.M. Soluble Corn Fiber Increases Calcium Absorption Associated with Shifts in the Gut Microbiome: A Randomized Dose-Response Trial in Free-Living Pubertal Females. J. Nutr. 2016, 146, 1298–1306. [Google Scholar] [CrossRef]
- Whisner, C.M.; Martin, B.R.; Schoterman, M.H.C.; Nakatsu, C.H.; McCabe, L.D.; McCabe, G.P.; Wastney, M.E.; van den Heuvel, E.G.H.M.; Weaver, C.M. Galacto-Oligosaccharides Increase Calcium Absorption and Gut Bifidobacteria in Young Girls: A Double-Blind Cross-over Trial. Br. J. Nutr. 2013, 110, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Ducros, V.; Arnaud, J.; Tahiri, M.; Coudray, C.; Bornet, F.; Bouteloup-Demange, C.; Brouns, F.; Rayssiguier, Y.; Roussel, A.M. Influence of Short-Chain Fructo-Oligosaccharides (Sc-FOS) on Absorption of Cu, Zn, and Se in Healthy Postmenopausal Women. J. Am. Coll. Nutr. 2005, 24, 30–37. [Google Scholar] [CrossRef]
- Yap, K.W.; Mohamed, S.; Yazid, A.M.; Maznah, I.; Meyer, D.M. Dose-response Effects of Inulin on the Faecal Short-chain Fatty Acids Content and Mineral Absorption of Formula-fed Infants. Nutr. Food Sci. 2005, 35, 208–219. [Google Scholar] [CrossRef]
- Coudray, C.; Bellanger, J.; Castiglia-Delavaud, C.; Rémésy, C.; Vermorel, M.; Rayssignuier, Y. Effect of Soluble or Partly Soluble Dietary Fibres Supplementation on Absorption and Balance of Calcium, Magnesium, Iron and Zinc in Healthy Young Men. Eur. J. Clin. Nutr. 1997, 51, 375–380. [Google Scholar] [CrossRef]
- Karbaschian, Z.; Mokhtari, Z.; Pazouki, A.; Kabir, A.; Hedayati, M.; Moghadam, S.S.; Mirmiran, P.; Hekmatdoost, A. Probiotic Supplementation in Morbid Obese Patients Undergoing One Anastomosis Gastric Bypass-Mini Gastric Bypass (OAGB-MGB) Surgery: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Obes. Surg. 2018, 28, 2874–2885. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.R.Z.; de Oliveira Carlos, L.; Wagner, N.R.F.; Felicidade, I.; da Cruz, M.R.; Taconeli, C.A.; Fernandes, R.; Filho, A.J.B.; Campos, A.C.L. Effects of Lactobacillus Acidophilus NCFM and Bifidobacterium Lactis Bi-07 Supplementation on Nutritional and Metabolic Parameters in the Early Postoperative Period after Roux-En-Y Gastric Bypass: A Randomized, Double-Blind, Placebo-Controlled Trial. Obes. Surg. 2021, 31, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Kazzi, F. Effect of Bacillus Coagulans and Galactomannans on Obese Patients Undergoing Sleeve Gastrectomy; Loma Linda University: Loma Linda, CA, USA, 2018. [Google Scholar]
- Woodard, G.A.; Encarnacion, B.; Downey, J.R.; Peraza, J.; Chong, K.; Hernandez-Boussard, T.; Morton, J.M. Probiotics Improve Outcomes after Roux-En-Y Gastric Bypass Surgery: A Prospective Randomized Trial. J. Gastrointest. Surg. 2009, 13, 1198–1204. [Google Scholar] [CrossRef]
- Crommen, S.; Rheinwalt, K.P.; Plamper, A.; Simon, M.-C.; Rösler, D.; Fimmers, R.; Egert, S.; Metzner, C. A Specifically Tailored Multistrain Probiotic and Micronutrient Mixture Affects Nonalcoholic Fatty Liver Disease—Related Markers in Patients with Obesity after Mini Gastric Bypass Surgery. J. Nutr. 2022, 152, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Sherf-Dagan, S.; Zelber-Sagi, S.; Zilberman-Schapira, G.; Webb, M.; Buch, A.; Keidar, A.; Raziel, A.; Sakran, N.; Goitein, D.; Goldenberg, N.; et al. Probiotics Administration Following Sleeve Gastrectomy Surgery: A Randomized Double-Blind Trial. Int. J. Obes. 2018, 42, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.L.; Martoni, C.J.; Prakash, S. Oral Supplementation with Probiotic L. Reuteri NCIMB 30242 Increases Mean Circulating 25-Hydroxyvitamin D: A Post Hoc Analysis of a Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2013, 98, 2944–2951. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, M.; Amirani, E.; Asemi, Z. The Effects of Vitamin D and Probiotic Co-Supplementation on Glucose Homeostasis, Inflammation, Oxidative Stress and Pregnancy Outcomes in Gestational Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2019, 38, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Hajipoor, S.; Hekmatdoost, A.; Rezaei, M.; Nachvak, S.M.; Alipour, M.; Eskandari, S.; Mostafai, R.; Sobhiyeh, M.R.; Mohammadi, R.; Pasdar, Y. The Effect of Yogurt Co-Fortified with Probiotic and Vitamin D on Lipid Profile, Anthropometric Indices and Serum 25-Hydroxi Vitamin D in Obese Adult: A Double-Blind Randomized-Controlled Trial. Food Sci. Nutr. 2021, 9, 303–312. [Google Scholar] [CrossRef]
- Skrypnik, K.; Bogdański, P.; Sobieska, M.; Suliburska, J. The Effect of Multistrain Probiotic Supplementation in Two Doses on Iron Metabolism in Obese Postmenopausal Women: A Randomized Trial. Food Funct. 2019, 10, 5228–5238. [Google Scholar] [CrossRef]
- Asemi, Z.; Bahmani, S.; Shakeri, H.; Jamal, A.; Faraji, A.-M. Effect of Multispecies Probiotic Supplements on Serum Minerals, Liver Enzymes and Blood Pressure in Patients with Type 2 Diabetes. Int. J. Diabetes Dev. Ctries. 2015, 35, 90–95. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Javid, A.Z.; Dehghan, P. The Effect of Enriched Chicory Inulin on Liver Enzymes, Calcium Homeostasis and Hematological Parameters in Patients with Type 2 Diabetes Mellitus: A Randomized Placebo-Controlled Trial. Prim. Care Diabetes 2016, 10, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Y.; Kuang, L.; Yang, K.; Xie, J.; Liu, X.; Shen, S.; Li, X.; Wu, S.; Yang, Y.; et al. Effects of Probiotics in Patients with Morbid Obesity Undergoing Bariatric Surgery: A Systematic Review and Meta-Analysis. Int. J. Obes. 2023, 47, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Saadati, S.; Naseri, K.; Asbaghi, O.; Yousefi, M.; Golalipour, E.; de Courten, B. Beneficial Effects of the Probiotics and Synbiotics Supplementation on Anthropometric Indices and Body Composition in Adults: A Systematic Review and Meta-Analysis. Obes. Rev. 2024, 25, e13667. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, Q.; Ye, X.; Li, R.; Meng, M.; Han, X. The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2024, 2024, e5996218. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Wang, L.; Tian, P.; Jin, X.; Zhao, J.; Zhang, H.; Wang, G.; Zhu, M. The Effect of Probiotic Supplementation on Glucolipid Metabolism in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3240. [Google Scholar] [CrossRef] [PubMed]
- Ekhlasi, G.; Kolahdouz Mohammadi, R.; Agah, S.; Zarrati, M.; Hosseini, A.F.; Arabshahi, S.S.S.; Shidfar, F. Do Symbiotic and Vitamin E Supplementation Have Favorite Effects in Nonalcoholic Fatty Liver Disease? A Randomized, Double-Blind, Placebo-Controlled Trial. J. Res. Med. Sci. 2016, 21, 106. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, S.; Masoumi, S.J.; Abiri, B.; Sarbakhsh, P.; Sarrafzadeh, J.; Nasimi, N.; Vafa, M. The Effect of Synbiotic and Vitamin D Co-Supplementation on Body Composition and Quality of Life in Middle-Aged Overweight and Obese Women: A Randomized Controlled Trial. Clin. Nutr. ESPEN 2022, 52, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Mohammadparast, V.; Mohammadi, T.; Karimi, E.; Mallard, B.L. Effects of Probiotic and Selenium Co-Supplementation on Lipid Profile and Glycemia Indices: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Curr. Nutr. Rep. 2023, 12, 167–180. [Google Scholar] [CrossRef]
- Kopp, L.; Schweinlin, A.; Tingö, L.; Hutchinson, A.N.; Feit, V.; Jähnichen, T.; Lehnert, K.; Vetter, W.; Rings, A.; Jensen, M.G.; et al. Potential Modulation of Inflammation and Physical Function by Combined Probiotics, Omega-3 Supplementation and Vitamin D Supplementation in Overweight/Obese Patients with Chronic Low-Grade Inflammation: A Randomized, Placebo-Controlled Trial. Int. J. Mol. Sci. 2023, 24, 8567. [Google Scholar] [CrossRef]
Micronutrient | Via 2012 [3] | Roust and DiBaise, 2017 * [4] | Ciobârcâ et al., 2022 * [5] |
---|---|---|---|
Vitamin A | 17 | 0–17 | - |
Vitamin D | 80–90 | 22–80 | 20–98 |
Vitamin C | 35–35 | - | - |
Vitamin B1 | 15–29 | - | - |
Vitamin B6 | 0–11 | - | - |
Vitamin B9 | 3–4 | 0–32 | 0–63 |
Vitamin B12 | 3–8 | 0–12 | 5–34 |
Magnesium | - | 0–35 | - |
Calcium | - | 0–14 | - |
Iron | - | 1–9 | 2–29 |
Selenium | 58 | 3 | - |
Zinc | 14–30 | 0–3 | - |
Micronutrient | Mean or Median % Change within Group | Studied Group | Mean or Median Weight Loss within Group (kg) | Treatment Duration | Reference |
---|---|---|---|---|---|
Serum vit. A | −22 | Danish ^ adults with obesity | 12 | 8 weeks | [28] |
Serum vit. E | −25 | ||||
Plasma vit. C | −27 | American ^ adults with obesity | 4 | 4 weeks | [29] |
Erythrocyte vit. B1 | −12 | Australian ^ adults with T2D 1 and regular levels of vit. B1 in the diet | 10 | 16 weeks | [30] |
Plasma vit. B6 | 52 | Spanish ^ women with obesity on hypocaloric cereal-based diet | 3 | 6 weeks | [31] |
Serum vit. B9 | 217 | Danish ^ adults with obesity | 12 | 8 weeks | [28] |
Serum vit. B12 | 24 | ||||
Serum Mg | 5 | Norwegian ^ patients with a BMI in the obese range | 10 | 8 weeks | [32] |
Serum Ca | <−1 | Jordanian ^ women with obesity | 10 | 3 months | [33] |
Serum Fe | 35 | Jordanian ^ women (18–30 years old) | 7 | 3 months | [34] |
Serum Se | <−1 | Cypriot ^ adults | 1 | 8 weeks | [35] |
Serum Zn | 10 | Egyptian ^ students on low-carbohydrate diet | 6 | 40 days | [36] |
Micronutrient | Studied Group | Number of People Included | Measure | 95% Confidence Interval | Reference |
---|---|---|---|---|---|
Vit. A | Iranian ^ OB reproductive-aged women | 56 | MD −1.5 * | −1.8, −1.3 | [73] |
Vit. D | OW and OB participants of weight loss programs | 947 | MD −0.4 | −1.1, 0.2 | [74] |
Vit. E | OW and OB adults | 1245 | WMD −0.1 | −2.1, 2.0 | [55] |
Vit. C | Iraqi ^ Adults with MetS | 120 | MD 0.0 | 0.0, 0.0 | [75] |
Vit. B1 | Mexican OW and OB adults with T2D | 36 | MD −0.6 | N/A | [76] |
Vit. B6 | Iranian ^ dieting OB and OW women | 44 | MD −1.4 * | −2.5, −0.4 | [77] |
Vit. B9 | Adults | 457 | WMD −0.2 | −0.5, 0.2 | [78] |
Vit. B12 | Iranian ^ adults with NAFLD | 40 | DBM −0.6 | N/A | [79] |
Mg | Adults | 2551 | WMD 0.2 | −0.3, 0.7 | [80] |
Ca | OW and OB adults | 662 | MD −0.7 * | −1.0, −0.5 | [81] |
Se | Iranian ^ women with PCOS given probiotics, Spanish ^ healthy men on isocaloric diet, Italian ^ dieting OB adults | 60, 24, and 37, respectively | MD −0.8 in all studies; * only in women with PCOS | Range from individual RCTs | [82,83,84] |
Zn | OW and OB adults otherwise healthy | 245 | WMD −0.6 | −1.1, −0.0 | [42] |
Cr | Adults with T2D | 636 | WMD −0.3 | −0.7, 0.2 | [58] |
Micronutrient | Studied Group | Number of People Included | Measure (95% Confidence Interval) | Reference | ||||
---|---|---|---|---|---|---|---|---|
Effect Size | TG (mg/dL) | TC (mg/dL) | LDL (mg/dL) | HDL (mg/dL) | ||||
Vit. A | Iranian ^ OB reproductive-aged women | 56 | MD | 6.2 (−0.9, 13.3) | 1.2 (−5.0, 7.4) | 4.3 (−12.8, 21.3) | −3.1 (−4.3, −1.9) | [73] |
Vit. D | OW OB children and adolescents | 595 | WMD | −4.3 (−20.2, 11.6) | −0.2 (−2.4, 2.1) | −4.6 (−12.8, 3.7) | 1.0 (−1.2, 3.2) | [89] |
Vit. E | Patients with diabetes | 613 | WMD | 1.3 (−9.2, 11.9) | −0.7 (−15.0, 13.7) | −0.5 (−8.3, 7.3) | 0.7 (−1.3, 2.6) | [56] |
Vit. C | Adults with T2D | 872 | WMD | −16.5 (−31.9, −1.1) | −13.0 (−23.1, −2.9) | −7.5 (−17.3, 2.3) | 2.2 (−0.5, 5.0) | [90] |
Vit. B1 | Adults with T2D | 364 | MD | −20.3 (−44.3 to 3.5) | - | 5.4 (−6.6, 17.4) | 3.9 (0.4, 7.7) | [91] |
Vit. B6 | Iranian ^ dieting OB and OW women | 44 | MD | −11.4 (−19.8, −2.9) | −13.5 (−20.1, −6.9) | −9.4 (−14.8, −4.0) | −0.5 (−3.3, 2.3) | [77] |
Vit. B9 | Adults | 21,718 | WMD | −9.8 (−15.5, 4.0) | −4.0 (−6.7, −1.2) | −1.0 (−6.8, 4.9) | 0.4 (−0.5, 1.4) | [92] |
Vit. B12 | Iranian ^ adults with NAFLD | 40 | DBM | −16.5 (N/A) | - | 5.5 (N/A) | −0.1 (N/A) | [79] |
Mg | Adults | 1192 | WMD | −0.9 (−22.1, 3.5) | 1.2 (−4.3, 6.2) | −0.4 (−5.0, 4.3) | 1.2 (−0.1, 2.3) | [93] |
Ca | Adults | 1119 | WMD | 1.7 (−2.7, 7.1) | 0.00 (−4.3, 4.6) | −3.1 (−6.1, −0.4) | −0.4 (−1.6, 0.4) | [94] |
Se | Adults | 2984 | WMD | −0.8 (−4.7, 3.1) | −2.1 (−4.1, −0.1) | 0.9 (−1.2, 3.0) | 0.3 (−0.7, 1.3) | [95] |
Zn | Adults with T2D | 1357 | WMD | −17.4 (−22.6, −12.2) | −19.6 (−28.5, −10.7) | −8.8 (−14.8, −2.8) | 4.8 (0.9, 8.8) | [88] |
Cr | Adults | 12,844 | ES | −0.2 (−0.5, 0.1) | −0.1 (−0.4, 0.2) | −0.1 (−0.2, 0.0) | 0.1 (−0.1, 0.1) | [59] |
Micronutrient | Studied Group | Number of People Included | Measure (95% Confidence Interval) | Reference | ||||
---|---|---|---|---|---|---|---|---|
Effect Size | FG (mg/dL) | FI (µIU/mL) | HOMA-IR | HbA1c (%) | ||||
Vit. A | Iranian ^ OB reproductive-aged women | 56 | MD | 0.5 (−1.6, 2.7) | - | - | - | [73] |
Vit. D | Patients with diabetes | 2006 | MD | −2.7 (−7.8, 2.4) | - | −0.1 (−0.5, 0.4) | −0.0 (−0.1, 0.1) | [51] |
Vit. E | Patients with diabetes | 2171 | MD | −3.4 (−8.1, 1.4) | −1.1 (−1.5, −0.6) | −0.4 (−0.8, −0.1) | −0.2 (−0.3, −0.1) | [57] |
Vit. C | OW and OB adults with T2D | 1447 | WMD | −10.7 (−18.5, −2.9) | −1.7 (−3.2, −0.3) | −0.9 (−2.0, 0.3) | −0.5 (−0.8, −0.2) | [115] |
Vit. B1 | Adults with T2D | 364 | MD | −3.6 (−12.4, 5.2) | - | - | 0.0 (−0.4, 0.3) | [91] |
Vit. B6 | Iranian ^ dieting OB and OW women | 44 | MD | −1.0 (−5.0, 3.0) | −1.5 (−2.2, −0.8) | −0.5 (−0.7, −0.3) | - | [77] |
Vit. B9 | Adults | 34,646 | WMD | −2.2 (−3.7, −0.7) | −0.2 (−0.4, −0.1) | −0.4 (−0.7, −0.1) | −0.3 (−0.7, 0.2) | [116] |
Vit. B12 | Iranian ^ adults with NAFLD | 40 | DBM | −3.5 (N/A) | −1.3 (N/A) | −0.3 (N/A) | - | [79] |
Mg | Adults | 1362 | WMD | −3.6 (−8.1, 0.9) | −0.3 (−1.4, 0.7) | −0.7 (−1.2, −0.1) | 0.0 (−0.1, 0.1) | [117] |
Se | Adults | 1411 | WMD | −1.3 (−4.0, 1.4) | −3.0 (−5.1, −0.9) | −0.8 (−2.1, 0.5) | 0.1 (−0.2, 0.3) | [118] |
Zn | OW and OB adults | 651 | WMD | −8.6 (−14.0, −3.1) | −0.8 (−2.5, −0.9) | −0.5 (−0.8, −0.3) | −0.3 (−0.4, −0.1) | [119] |
Cr | Patients with T2D | 1350 | WMD | −19.0 (−36.2, −1.9) | −1.8 (−2.6, 1.0) | −1.5 (−2.4, −0.7) | −0.7 (−1.2, −0.2) | [60] |
Micronutrient | Studied Group | Range in Studies Included in Analysis (Dose/Day) | Parameter for Which the Effective Dose was Proposed | Suggested Effective Dose per Day | Reference | UL per Day | AR per Day | AI per Day |
---|---|---|---|---|---|---|---|---|
Vit. D | OW and OB children and adolescents | 357–42,857 IU | HDL, CRP | ≥4000 IU | [89] | 4000 IU (100 µg) 2 | 600 IU (15 µg) | |
Vit. E | Patients with diabetes | 90–1620 mg | HbA1c, FI | 400–700 mg | [57] | 300 mg 3 | 11 and 13 mg 7 | |
Vit. C | OW and OB adults with T2D | 250–2000 mg | HOMA-IR | ≥1000 mg | [115] | N/A | 80 and 90 mg 7 | |
Vit. B1 | Adults with T2D | 100–900 mg | TG | 120 mg | [91] | N/A | 0.6–0.8 and 0.7–1 mg 7 | |
Vit. B6 | Iranian ^ dieting OB and OW women | 80 mg | TG, TC, LDL, FI, HOMA-IR, Body weight | 80 mg 1 | [77] | 25 mg 4 | 1.3 and 1.5 mg 7 | |
Vit. B9 | Adults | 0.25–15 mg | HOMA-IR, TC, LDL | ≥5 mg | [92,116] | 1 mg 5 | 0.25 mg | |
Mg | Adults | 48–450 mg | BMI | ≥350 mg | [80] | 250 mg 6 | 300 and 350 mg 7 | |
Ca | Adults | 800–2000 mg | LDL | ≥1000 mg | [94] | 2500 mg | 750 and 860 mg 7 | |
Se | Adults | 100–300 µg | TG, TC | 200 µg | [109] | 300 µg | 70 µg | |
Zn | T2D adults with Zn sufficiency | 22–660 mg | Body weight, TG | ≥50 mg | [88] | 25 mg | 6.2–8.9 and 7.5–11.0 mg 7 | |
Cr | T2D Adults | 200–740 µg | TG | >500 µg | [59] | N/A | N/A | N/A |
Supplementation in Treatment Group | Micronutrient | Researched Population | Type of Research and Reference |
---|---|---|---|
Familact® with L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS; MV and mineral supplement (not disclosed if given by the investigators or advised to take), intramuscular vitamin B12 | vitamin B12, B9, and D↑ | 46 Iranian ^ women after one anastomosis gastric bypass/mini gastric bypass surgery | RCT with placebo [169] |
Flora Vantage® L. acidophilus NCFM, B. lactis Bi-07, and MV | Vitamin B9, B12, and D *↑ | 101 Brazilian ^ patients after Roux-en-Y surgery | RCT with placebo [170] |
LactoWise® B. coagulans, galactomannans, advised to supplement MV with emphasis on vitamins D, B12, C, and Fe | Vitamin B12 and D | 60 American ^ patients after laparoscopic sleeve gastrectomy | RCT with placebo [171] |
Puritan’s Pride® containing Lactobacillus, advised to supplement MV and vitamin B12 | Vitamin B12↑ | 44 American ^ patients after Roux-en-Y surgery | RCT, no placebo [172] |
L. acidophilus, B. breve, B. longum, L. delbrueckii susp. bulgaricus, L. helveticus, L. plantarum, L. rhamnosus, L. casei, Lc. lactis susp. lactis, S. thermophilus, soluble fiber Nutriose®, and multivitamin | Ferritin and haemoglobin | 48 German ^ patients after mini gastric bypass surgery | RCT with placebo [173] |
Bio-25® L. acidophilus, B. bifidum, L. rhamnosus, L. lactis, L. casei, B. breve, S. thermophilus, B. longum, L. paracasei, L. plantarum, B. infantis, no information about MV supplement given | Ferritin and haemoglobin *↓ | 100 Israeli ^ patients after sleeve gastrectomy surgery | RCT with placebo [174] |
L. reuteri NCIMB 30242 | Vitamin A, D↑, E, β-carotene, Ca | 127 Czech ^ hypercholesterolemic adults | Post-hoc analysis of RCT with placebo [175] |
L. acidophilus, B. bifidum, L. reuteri, L. fermentum and vitamin D at 50,000 IU every two weeks in addition to vitamin D 1000 IU and B9 400 µg daily supplementation | Vitamin D↑ | 87 Iranian ^ women with gestational diabetes | RCT with placebo [176] |
L. acidophilus La-B5, B. lactis Bb-12 in yogurt enriched with vitamin D | Vitamin D | 119 Iranian ^ adults with obesity on low-calorie diet | RCT with placebo [177] |
B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lc. lactis W19, and Lc. lactis W58 at two doses | Serum Fe, Zn *↑, Cu Hair Fe *↓, Zn, Cu | 90 Polish ^ postmenopausal women with obesity | RCT with placebo [178] |
L. acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus, and FOS | Ca↑, Zn, Mg, Fe | 58 Iranian ^ patients with T2D | RCT with placebo [179] |
Inulin from chicory enriched with FOS | Ca↑ | 46 Iranian ^ women with T2D | RCT with placebo [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudzka, A.; Kapusniak, K.; Zielińska, D.; Kołożyn-Krajewska, D.; Kapusniak, J.; Barczyńska-Felusiak, R. The Importance of Micronutrient Adequacy in Obesity and the Potential of Microbiota Interventions to Support It. Appl. Sci. 2024, 14, 4489. https://doi.org/10.3390/app14114489
Rudzka A, Kapusniak K, Zielińska D, Kołożyn-Krajewska D, Kapusniak J, Barczyńska-Felusiak R. The Importance of Micronutrient Adequacy in Obesity and the Potential of Microbiota Interventions to Support It. Applied Sciences. 2024; 14(11):4489. https://doi.org/10.3390/app14114489
Chicago/Turabian StyleRudzka, Agnieszka, Kamila Kapusniak, Dorota Zielińska, Danuta Kołożyn-Krajewska, Janusz Kapusniak, and Renata Barczyńska-Felusiak. 2024. "The Importance of Micronutrient Adequacy in Obesity and the Potential of Microbiota Interventions to Support It" Applied Sciences 14, no. 11: 4489. https://doi.org/10.3390/app14114489
APA StyleRudzka, A., Kapusniak, K., Zielińska, D., Kołożyn-Krajewska, D., Kapusniak, J., & Barczyńska-Felusiak, R. (2024). The Importance of Micronutrient Adequacy in Obesity and the Potential of Microbiota Interventions to Support It. Applied Sciences, 14(11), 4489. https://doi.org/10.3390/app14114489