Numerical Investigation on the Buckling Load Capacity of Novel Compound Cross-Sections Used in Crane Construction
Abstract
:1. Introduction
2. Compound Cross-Sections for Use in Crane Construction
3. Stress-Based Design
4. Global Analysis
4.1. Numerical Modeling
4.2. LA and LBA
4.3. MNA
5. GMNIA
5.1. Amplitudes for Equivalent Imperfections
5.2. Imperfection Form
5.2.1. Eigenmode-Affine Imperfection Pattern
5.2.2. Depressions near Welds
5.2.3. Quasi-Collapse-Affine Imperfection
5.2.4. Combined Pattern
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamic analysis |
LA | Linear elastic shell analysis |
LBA | Linear elastic bifurcation (eigenvalue) analysis |
MNA | Materially nonlinear buckling analysis based on the small deformation theory |
Amplitudes for the equivalent imperfections | |
Elastic critical resistance expressed | |
Plastic limit factor | |
Overall relative slenderness | |
Gauge length | |
Dimple imperfection amplitudes | |
GMNA | Geometrically and materially nonlinear analysis |
GMNIA | Geometrically and materially nonlinear analysis with imperfections explicitly included |
LPF | Load proportionality factor, dependent on the LBA results |
Imperfection factor | |
L | Length between restraints |
LBzz | Lateral buckling |
LTB | Lateral torsional buckling |
Dimensionless slenderness | |
Dimensionless buckling knockdown factor |
References
- CEN. DIN EN 1993-1-1:2010-12: Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings; German Version EN 1993-1-1:2005 + AC:2009; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- CEN. EN 1993-1–5:2010-12: Eurocode 3: Design of Steel Structures—Part 1–5: Plated Structural Elements; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- CEN. Eurocode 3: Design of Steel Structures—Part 1–6: Strength and Stability of Shell Structures; European Committee for Standardization: Brussels, Belgium, 2017. [Google Scholar]
- Beier-Tertel, J. Geometrische Ersatzimperfektionen für Tragfähigkeitsnachweise zum Biegedrillknicken von Trägern aus Walzprofilen; Schriftenreihe des Instituts für Konstruktiven Ingenieurbau, Ruhr-Universität Bochum, Shaker: Aachen, Germany, 2009. [Google Scholar]
- Kindmann, R.; Beier-Tertel, J. Geometrische Ersatzimperfektionen für das Biegedrillknicken von Trägern aus Walzprofilen–Grundsätzliches. Stahlbau 2010, 79, 689–697. [Google Scholar] [CrossRef]
- Stroetmann, R.; Fominow, S. Imperfections for the LTB–design of Members with I-sections. Proc. Civ. Eng. 2022, 5, 290–299. [Google Scholar] [CrossRef]
- Stroetmann, R.; Fominow, S. Equivalent geometric imperfections for the LTB-design of members with I-sections. Steel Constr. 2022, 15, 213–228. [Google Scholar] [CrossRef]
- Martins, J.P.; Da Simões Silva, L.; Reis, A. Eigenvalue analysis of cylindrically curved panels under compressive stresses—Extension of rules from EN 1993-1–5. Thin-Walled Struct. 2013, 68, 183–194. [Google Scholar] [CrossRef]
- Martins, J.P.; Beg, D.; Sinur, F.; Da Simões Silva, L.; Reis, A. Imperfection sensitivity of cylindrically curved steel panels. Thin-Walled Struct. 2015, 89, 101–115. [Google Scholar] [CrossRef]
- Martins, J.P.; Ljubinkovic, F.; Da Simões Silva, L.; Gervásio, H. Behaviour of thin-walled curved steel plates under generalised in-plane stresses: A review. J. Constr. Steel Res. 2018, 140, 191–207. [Google Scholar] [CrossRef]
- Le Tran, K.; Davaine, L.; Douthe, C.; Sab, K. Stability of curved panels under uniform axial compression. J. Constr. Steel Res. 2012, 69, 30–38. [Google Scholar] [CrossRef]
- Ljubinković, F.; Martins, J.P.S.C.; Santos Gervásio, H.M.; Silva, L.A.P.S. Steel box–girder bridge decks with curved bottom flange. Steel Constr. 2020, 13, 238–244. [Google Scholar] [CrossRef]
- Ljubinković, F.; Martins, J.P.; Gervásio, H.; Da Silva, L.S. Resistance of curved steel cross-sections for bridge deck applications: Design proposals. J. Constr. Steel Res. 2021, 182, 106679. [Google Scholar] [CrossRef]
- Wang, J.; Fajuyitan, O.K.; Orabi, M.A.; Rotter, J.M.; Sadowski, A.J. Cylindrical shells under uniform bending in the framework of Reference Resistance Design. J. Constr. Steel Res. 2020, 166, 105920. [Google Scholar] [CrossRef]
- Schneider, W. Kollapsanalyse Quasistatisch Belasteter Stählerner Schalentragwerke; Berichte aus dem Institut für Statik und Dynamik der Tragstrukturen, Shaker: Aachen, Germany, 2002. [Google Scholar]
- Wang, J.; Sadowski, A.J.; Rotter, J. Influence of ovalisation on the plastic collapse of thick cylindrical tubes under uniform bending. Int. J. Press. Vessel. Pip. 2018, 168, 94–99. [Google Scholar] [CrossRef]
- Schneider, W. Numerische Beulsicherheitsnachweise bei Schalenbeulfällen mit überkritischen Tragreserven. Stahlbau 2008, 77, 105–110. [Google Scholar] [CrossRef]
- Rotter, J. Cylindrical shells under axial compression. In Buckling of Thin Metal Shells; CRC Press: Boca Raton FL, USA, 2006; pp. 66–111. [Google Scholar] [CrossRef]
- Timmel, I. Imperfektionssensitivität Schlanker Stählerner Kreiszylinderschalen Unter Statischer Windbelastung; Berichte aus dem Institut für Statik und Dynamik der Tragstrukturen, Shaker: Aachen, Germany, 2004; Volume 8. [Google Scholar]
- Rotter, J.M. Shell buckling design and assessment and the LBA-MNA methodology. Stahlbau 2011, 80, 791–803. [Google Scholar] [CrossRef]
- Rotter, J.M.; Sadowski, A.J.; Chen, L. Nonlinear stability of thin elastic cylinders of different length under global bending. Int. J. Solids Struct. 2014, 51, 2826–2839. [Google Scholar] [CrossRef]
- Sadowski, A.J.; Morata, M.T.; Kathirkamanathan, L.; Seidel, M.; Rotter, J.M. On the existing test dataset of isotropic cylindrical metal shells under axial compression and the design of modern metal civil engineering shells. Struct. Saf. 2023, 102, 102285. [Google Scholar] [CrossRef]
- Martins, J.P.S.C.; Ljubinković, F.; Da Silva, L.S.; Može, P.; Pedro, J.O.; Piculin, S. Rules for Curved Steel Panels: Design Guidelines, Examples and Background: ECCS TC 8–WG 8.3: Plate Buckling, 1st ed.; ECCS—European Convention for Constructional Steelwork: Brussels, Belgium, 2022. [Google Scholar]
- Sutter, J. Elastisch-Plastischer Beulnachweis für Schalentragwerke: Beulbemessung Von Aerodynamisch Optimierten Kranhauptträgern. Master’s Thesis, University of Applied Sciences Vorarlberg, Dornbirn, Austria, 2018. [Google Scholar]
- Rust, W.; Schweizerhof, K. Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination. Thin-Walled Struct. 2003, 41, 227–244. [Google Scholar] [CrossRef]
- Sadowski, A.J.; Fajuyitan, O.K.; Wang, J. A computational strategy to establish algebraic parameters for the Reference Resistance Design of metal shell structures. Adv. Eng. Softw. 2017, 109, 15–30. [Google Scholar] [CrossRef]
- RWTH Aachen University. Künz Container Krane—Aerodynamischer Beiwert für den Träger HTTR-Rund; RWTH Aachen University: Aachen, Germany, 2015. [Google Scholar]
- Lang, R.; Klapper, G.; Klien, T. Ein moderner Kran für alten Schrott am Werksgelände der Badischen Stahlwerke GmbH (BSW). Stahlbau 2023, 92, 453–460. [Google Scholar] [CrossRef]
- CEN/TC 250/prEN 1993-1-6:2021; Eurocode 3—Design of Steel Structures—Part 1–6 Strength and Stability of Shell Structures. European Committee for Standardization: Brussels, Belgium, 2023.
- Ansys Inc. Ansys 2022R1; Ansys Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Ansys Inc. Ansys 2023R1: Mechanical APDL Element Reference; Ansys Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Knödel, P.; Ummenhofer, T.; Ruckenbrod, C. Silos und Tanks. In Dauerhaftigkeit–Ingenieurtragwerke; Kuhlmann, U., Ed.; Stahlbau-Kalender, Wilhelm Ernst & Sohn: Berlin, Germany, 2017; pp. 595–692. [Google Scholar] [CrossRef]
- Knödel, P.; Ummenhofer, T. Regeln für die Berechnung von Behältern mit der FEM. Stahlbau 2017, 86, 325–339. [Google Scholar] [CrossRef]
- Schmidt, H. Stabilität stählerner Schalentragwerke. In Stahlbau-Kalender; Kuhlmann, I.U., Ed.; Mauerwerk-Kalender, Verlag für Architektur und Technische Wissenschaften GmbH & Co. KG: Berlin, Germany, 2009; pp. 529–612. [Google Scholar] [CrossRef]
- Sadowski, A.J.; Seidel, M. 8-MW wind turbine tower computational shell buckling benchmark Part 1: An international ’round-robin’ exercise. Eng. Fail. Anal. 2023, 148, 107124. [Google Scholar] [CrossRef]
- Sadowski, A.J.; Seidel, M. 8-MW wind turbine tower computational shell buckling benchmark Part 2: Detailed reference solution. Eng. Fail. Anal. 2023, 148, 107133. [Google Scholar] [CrossRef]
- Schmidt, H. Stability of steel shell structures. J. Constr. Steel Res. 2000, 55, 159–181. [Google Scholar] [CrossRef]
- Kindmann, R. Stahlbau II, 5th ed.; Bauingenieur-Praxis, Ernst & Sohn: Berlin, Germany, 2021. [Google Scholar]
- Pircher, M.; Berry, P.; Ding, X.; Bridge, R. The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks. Thin-Walled Struct. 2001, 39, 999–1014. [Google Scholar] [CrossRef]
- Pircher, M.; Bridge, R. The influence of circumferential weld-induced imperfections on the buckling of silos and tanks. J. Constr. Steel Res. 2001, 57, 569–580. [Google Scholar] [CrossRef]
- Jansseune, A.; de Corte, W.; Belis, J. Imperfection sensitivity of locally supported cylindrical silos subjected to uniform axial compression. Int. J. Solids Struct. 2016, 96, 92–109. [Google Scholar] [CrossRef]
- Rotter, J.M.; Teng, J.G. Elastic Stability of Cylindrical Shells with Weld Depressions. J. Struct. Eng. 1989, 115, 1244–1263. [Google Scholar] [CrossRef]
- Rotter, J.M.; Schmidt, H. (Eds.) Buckling of Steel Shells European Design Recommandations: European Design Recommendations, 5th ed.; ECCS: Brussels, Belgium, 2016; Volume 125. [Google Scholar]
- Schneider, W. Konsistente geometrische Ersatzimperfektionen für den numerisch gestützten Beulsicherheitsnachweis axial gedrückter Schalen. Stahlbau 2004, 73, 262–269. [Google Scholar] [CrossRef]
- Wirth, S. Beulsicherheitsnachweise für Schalenförmige Bauteile Nach EN 1993-1–6: Kritische Analyse der Praktischen Anwendbarkeit Anhand Zweier Fallstudien mit Experimentellem Hintergrund; Schriftenreihe Institut für Metall- und Leichtbau, Universität Duisburg-Essen, Shaker: Essen, Germany, 2008. [Google Scholar]
- Schneider, W. Ersatzimperfektionen für den numerischen Beulsicherheitsnachweis stählerner Schalentragwerke—State of the Art. Stahlbau 2006, 75, 754–760. [Google Scholar] [CrossRef]
- Müller, A.; Vild, M.; Taras, A. Decision tree for local + global imperfection combinations in double–symmetric prismatic members—Practical recommendations in the framework of advanced analysis. Steel Constr. 2023, 16, 2–15. [Google Scholar] [CrossRef]
- Teng, J.G.; Rotter, J.M. (Eds.) Buckling of Thin Metal Shells; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
Number | Analysis | Imperfection | Buckling Mode | LPF | / |
---|---|---|---|---|---|
1 | LBA | none | - | 1.00 | - |
2 | MNA | none | - | 1.18 | - |
3 | GMA | none | - | 0.96 | - |
4 | GMNIA | eigenmode | 1 | 0.43 | 0.58 |
5 | GMNIA | eigenmode | 3 | 0.44 | 0.60 |
6 | GMNIA | eigenmode | 5 | 0.45 | 0.58 |
7 | GMNIA | eigenmode | 7 | 0.45 | 0.61 |
8 | GMNIA | eigenmode | 20 | 0.45 | 0.60 |
9 | GMNIA | eigenmode | 22 | 0.45 | 0.60 |
10 | GMNIA | eigenmode | 186 | 0.46 | 0.61 |
11 | GMNIA | collapse-affine | - | 0.58 | 0.78 |
12 | GMNIA | quasi-collapse-affine | - | 0.48 | 0.65 |
13 | GMNIA | post-buckling | - | 0.48 | 0.64 |
14 | GMNIA | weld depression | pattern 2.1 | 0.46 | 0.62 |
15 | GMNIA | weld depression | pattern 2.2 | 0.73 | 0.98 |
16 | GMNIA | combined pattern | - | 0.47 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladinek, M.; Klapper, G.; Lang, R. Numerical Investigation on the Buckling Load Capacity of Novel Compound Cross-Sections Used in Crane Construction. Appl. Sci. 2024, 14, 45. https://doi.org/10.3390/app14010045
Ladinek M, Klapper G, Lang R. Numerical Investigation on the Buckling Load Capacity of Novel Compound Cross-Sections Used in Crane Construction. Applied Sciences. 2024; 14(1):45. https://doi.org/10.3390/app14010045
Chicago/Turabian StyleLadinek, Markus, Georg Klapper, and Robert Lang. 2024. "Numerical Investigation on the Buckling Load Capacity of Novel Compound Cross-Sections Used in Crane Construction" Applied Sciences 14, no. 1: 45. https://doi.org/10.3390/app14010045
APA StyleLadinek, M., Klapper, G., & Lang, R. (2024). Numerical Investigation on the Buckling Load Capacity of Novel Compound Cross-Sections Used in Crane Construction. Applied Sciences, 14(1), 45. https://doi.org/10.3390/app14010045