Multi-User Tracking in Reconfigurable Intelligent Surface Aided Near-Field Wireless Communications System
Abstract
:1. Introduction
- Considering the temporal correlations between each user’s coordinates changes, a multi-user tracking system is designed based on the extended Kalman filter (EKF), where the non-linear relationships between the signals received at the BS antennas and the coordinates of the moving users are directly utilized.
- Based on the near-field model accounting for the incident spherical wavefront, its geometric properties are further exploited. Additional measurement dimensions can be provided by the RISs to suffice high-precision multi-user tracking with a single BS, thus avoiding the reliance on the LoS paths.
- The Bayesian Cramér–Rao bound (BCRB) is derived for the multi-user tracking system in a pattern consistent with the EKF process, providing a theoretical lower bound of mean square error (MSE) for the tracking problem.
- An optimizing scheme of passive phase shift design at the RISs is devised. The issue is formatted as a problem of minimizing the derived BCRB of tracking errors and solved by leveraging the Gradient Descent (GD) method. Numerical results indicate that the accuracy of the proposed tracking scheme can approach the derived BCRB.
2. System Model
2.1. Tracking Scenario and Geometry
2.2. Signal Model for Incident Spherical Wavefronts
3. Navigation Framework
3.1. Transition Model
3.2. Observation Model
Algorithm 1 EKF-based Multi-user Tracking with RISs |
Initialization Define initial distribution . Prediction Step Given , where . Given , where . |
4. RIS-Aided Tracking Error Bound and Optimization
4.1. Derivation of BCRB
4.2. GD-Based RIS Phase Shift Optimization
Algorithm 2 Optimization for RISs’ phase shift |
Initialization . Set iteration index .
repeat Compute and according to (19) and (28), respectively. For each element in , calculate by (34). For each element in , update by (35). Set . until the fractional decrement of the target value is below a certain threshold. Output: |
5. Results
5.1. Simulation Scenario and Parameter Settings
5.2. Simulation Results and Discussions
5.2.1. Convergence and Error Analysis of Tracking
5.2.2. Effect of the Number of BS Antennas
5.2.3. Effect of Users’ Mobility
5.2.4. Effect of the Number of RISs and RIS Elements
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Wymeersch, H.; Shrestha, D.; De Lima, C.M.; Yajnanarayana, V.; Richerzhagen, B.; Keskin, M.F.; Schindhelm, K.; Ramirez, A.; Wolfgang, A.; De Guzman, M.F.; et al. Integration of communication and sensing in 6G: A joint industrial and academic perspective. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1–7. [Google Scholar]
- Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An overview of signal processing techniques for joint communication and radar sensing. IEEE J. Sel. Top. Signal Process. 2021, 15, 1295–1315. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Bourdoux, A.; Barreto, A.N.; van Liempd, B.; de Lima, C.; Dardari, D.; Belot, D.; Lohan, E.S.; Seco-Granados, G.; Sarieddeen, H.; Wymeersch, H.; et al. 6G white paper on localization and sensing. arXiv 2020, arXiv:2006.01779. [Google Scholar]
- Jeong, S.; Simeone, O.; Haimovich, A.; Kang, J. Beamforming design for joint localization and data transmission in distributed antenna system. IEEE Trans. Veh. Technol. 2014, 64, 62–76. [Google Scholar] [CrossRef]
- Zheng, Y.; Sheng, M.; Liu, J.; Li, J. Exploiting AoA estimation accuracy for indoor localization: A weighted AoA-based approach. IEEE Wirel. Commun. Lett. 2018, 8, 65–68. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, Q.; Chen, H.; Gao, F.; Ansari, N. Distributed angle estimation for localization in wireless sensor networks. IEEE Trans. Wirel. Commun. 2012, 12, 527–537. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, H. TDOA localization with unknown signal propagation speed and sensor position errors. IEEE Commun. Lett. 2020, 24, 1024–1027. [Google Scholar] [CrossRef]
- Lohrasbipeydeh, H.; Gulliver, T.A. Unknown RSSD-based localization CRLB analysis with semidefinite programming. IEEE Trans. Commun. 2019, 67, 3791–3805. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Shen, Y.; Conti, A.; Win, M.Z. Location awareness in beyond 5G networks via reconfigurable intelligent surfaces. IEEE J. Sel. Areas Commun. 2022, 40, 2011–2025. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.J.A.; Shi, Y.; Yan, W.; Liu, H. Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities. IEEE Wirel. Commun. 2021, 28, 136–143. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, R.; Yuan, X. Passive beamforming design for reconfigurable intelligent surface enabled integrated sensing and communication. arXiv 2022, arXiv:2206.00525. [Google Scholar] [CrossRef]
- Cai, C.; Yuan, X.; Yan, W.; Huang, Z.; Liang, Y.C.; Zhang, W. Hierarchical passive beamforming for reconfigurable intelligent surface aided communications. IEEE Wirel. Commun. Lett. 2021, 10, 1909–1913. [Google Scholar] [CrossRef]
- Wymeersch, H.; He, J.; Denis, B.; Clemente, A.; Juntti, M. Radio localization and mapping with reconfigurable intelligent surfaces. arXiv 2019, arXiv:1912.09401. [Google Scholar]
- Björnson, E.; Wymeersch, H.; Matthiesen, B.; Popovski, P.; Sanguinetti, L.; de Carvalho, E. Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications. IEEE Signal Process. Mag. 2022, 39, 135–158. [Google Scholar] [CrossRef]
- Wymeersch, H.; He, J.; Denis, B.; Clemente, A.; Juntti, M. Radio localization and mapping with reconfigurable intelligent surfaces: Challenges, opportunities, and research directions. IEEE Veh. Technol. Mag. 2020, 15, 52–61. [Google Scholar] [CrossRef]
- Elzanaty, A.; Guerra, A.; Guidi, F.; Alouini, M.S. Reconfigurable intelligent surfaces for localization: Position and orientation error bounds. IEEE Trans. Signal Process. 2021, 69, 5386–5402. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Di, B.; Bian, K.; Han, Z.; Song, L. Metalocalization: Reconfigurable intelligent surface aided multi-user wireless indoor localization. IEEE Trans. Wirel. Commun. 2021, 20, 7743–7757. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, S.; Matthaiou, M.; You, X. Channel estimation and user localization for IRS-assisted MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 2021, 21, 2320–2335. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W. Joint beam training and positioning for intelligent reflecting surfaces assisted millimeter wave communications. IEEE Trans. Wirel. Commun. 2021, 20, 6282–6297. [Google Scholar] [CrossRef]
- He, J.; Wymeersch, H.; Sanguanpuak, T.; Silvén, O.; Juntti, M. Adaptive beamforming design for mmWave RIS-aided joint localization and communication. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Dardari, D.; Decarli, N.; Guerra, A.; Guidi, F. LOS/NLOS near-field localization with a large reconfigurable intelligent surface. IEEE Trans. Wirel. Commun. 2021, 21, 4282–4294. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Di, B.; Bian, K.; Han, Z.; Song, L. Towards ubiquitous positioning by leveraging reconfigurable intelligent surface. IEEE Commun. Lett. 2020, 25, 284–288. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Georgiou, O.; Gradoni, G.; Di Renzo, M. Wireless fingerprinting localization in smart environments using reconfigurable intelligent surfaces. IEEE Access 2021, 9, 135526–135541. [Google Scholar] [CrossRef]
- Abrardo, A.; Dardari, D.; Di Renzo, M. Intelligent reflecting surfaces: Sum-rate optimization based on statistical position information. IEEE Trans. Commun. 2021, 69, 7121–7136. [Google Scholar] [CrossRef]
- Zhou, W.; Xia, J.; Li, C.; Fan, L.; Nallanathan, A. Joint precoder, reflection coefficients, and equalizer design for IRS-assisted MIMO systems. IEEE Trans. Commun. 2022, 70, 4146–4161. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, F.; Pan, C.; Ren, H.; Wang, K. Statistical CSI-based transmission design for reconfigurable intelligent surface-aided massive MIMO systems with hardware impairments. IEEE Wirel. Commun. Lett. 2021, 11, 38–42. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, S.; Matthaiou, M.; You, X. Conformal IRS-Empowered MIMO-OFDM: Channel Estimation and Environment Mapping. IEEE Trans. Commun. 2022, 70, 4884–4899. [Google Scholar] [CrossRef]
- Fascista, A.; Keskin, M.F.; Coluccia, A.; Wymeersch, H.; Seco-Granados, G. RIS-aided joint localization and synchronization with a single-antenna receiver: Beamforming design and low-complexity estimation. IEEE J. Sel. Top. Signal Process. 2022, 16, 1141–1156. [Google Scholar] [CrossRef]
- Rahal, M.; Denis, B.; Keykhosravi, K.; Keskin, M.F.; Uguen, B.; Wymeersch, H. Constrained RIS phase profile optimization and time sharing for near-field localization. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar]
- Gao, P.; Lian, L.; Yu, J. Wireless area positioning in RIS-assisted mmWave systems: Joint passive and active beamforming design. IEEE Signal Process. Lett. 2022, 29, 1372–1376. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, B.; Zhao, Y.; Luan, M.; Hu, F. Power optimization for target localization with reconfigurable intelligent surfaces. Signal Process. 2021, 189, 108252. [Google Scholar] [CrossRef]
- Teng, B.; Yuan, X.; Wang, R.; Jin, S. Bayesian user localization and tracking for reconfigurable intelligent surface aided MIMO systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 1040–1054. [Google Scholar] [CrossRef]
- Palmucci, S.; Guerra, A.; Abrardo, A.; Dardari, D. Two-Timescale Joint Precoding Design and RIS Optimization for User Tracking in Near-Field MIMO Systems. IEEE Trans. Signal Process. 2023, 71, 3067–3082. [Google Scholar] [CrossRef]
- Han, Y.; Tang, W.; Jin, S.; Wen, C.K.; Ma, X. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans. Veh. Technol. 2019, 68, 8238–8242. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L.; Han, S.; Wang, X. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans. Commun. 2021, 69, 7736–7747. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Wang, K.; Elkashlan, M.; Di Renzo, M.; Schober, R.; Poor, H.V.; Wang, J.; Hanzo, L. Two-timescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI. IEEE Trans. Inf. Theory 2022, 69, 3001–3033. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, X.; Liu, C.; Peng, M.; Zhong, C. Location sensing and beamforming design for IRS-enabled multi-user ISAC systems. IEEE Trans. Signal Process. 2022, 70, 5178–5193. [Google Scholar] [CrossRef]
- Teng, B.; Yuan, X.; Wang, R. Variational Bayesian Multiuser Tracking for Reconfigurable Intelligent Surface Aided MIMO-OFDM Systems. arXiv 2023, arXiv:2304.11884. [Google Scholar]
- Tichavsky, P.; Muravchik, C.; Nehorai, A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process. 1998, 46, 1386–1396. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.; Jiu, B.; Bao, Z. Power allocation algorithm for target tracking in unmodulated continuous wave radar network. IEEE Sens. J. 2014, 15, 1098–1108. [Google Scholar]
- Xie, M.; Yi, W.; Kirubarajan, T.; Kong, L. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks. IEEE Trans. Signal Process. 2017, 66, 729–743. [Google Scholar] [CrossRef]
- Razaviyayn, M.; Hong, M.; Luo, Z.Q. A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 2013, 23, 1126–1153. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear programming. J. Oper. Res. Soc. 1997, 48, 334. [Google Scholar] [CrossRef]
- Song, J.; Babu, P.; Palomar, D.P. Sequence design to minimize the weighted integrated and peak sidelobe levels. IEEE Trans. Signal Process. 2015, 64, 2051–2064. [Google Scholar] [CrossRef]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 2016, 65, 794–816. [Google Scholar] [CrossRef]
- Hjorungnes, A.; Gesbert, D. Complex-valued matrix differentiation: Techniques and key results. IEEE Trans. Signal Process. 2007, 55, 2740–2746. [Google Scholar] [CrossRef]
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
Uplink | LoS-Blocked | Near-Field | Multi-User | Direct Approach 1 | Dynamic Tracking 2 | Passive RIS 3 | CRLB Utilized 4 | |
---|---|---|---|---|---|---|---|---|
Elzanaty et al. [20] | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ |
Zhang et al. [21] | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ |
Lin et al. [22] | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
Wang et al. [23] | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ |
He et al. [24] | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
Dardari et al. [25] | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ |
Lin et al. [31] | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
Fascista et al. [32] | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ |
Teng et al. [36] | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ |
Palmucci et al. [37] | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ |
Yu et al. [41] | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
Teng et al. [42] | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ |
Symbol | Meaning |
---|---|
x | scalar |
vector | |
matrix | |
transpose | |
conjugate | |
inverse | |
∇ | partial derivative |
trace of | |
diagonal matrix | |
expectation | |
complex domain | |
real domain | |
dimension of matrices | |
real part of complex value | |
imaginary part of complex value | |
module of complex value | |
-norm | |
the imaginary unit | |
, , , | set |
identity matrix | |
zero matrix |
Parameter | Value |
---|---|
P | |
1 | |
1 | |
K | 3 |
, , | |
M | 3 |
, , | |
, , | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Y.; Wang, R.; Liu, E.; Soto, I. Multi-User Tracking in Reconfigurable Intelligent Surface Aided Near-Field Wireless Communications System. Appl. Sci. 2024, 14, 205. https://doi.org/10.3390/app14010205
Mei Y, Wang R, Liu E, Soto I. Multi-User Tracking in Reconfigurable Intelligent Surface Aided Near-Field Wireless Communications System. Applied Sciences. 2024; 14(1):205. https://doi.org/10.3390/app14010205
Chicago/Turabian StyleMei, Yidan, Rui Wang, Erwu Liu, and Ismael Soto. 2024. "Multi-User Tracking in Reconfigurable Intelligent Surface Aided Near-Field Wireless Communications System" Applied Sciences 14, no. 1: 205. https://doi.org/10.3390/app14010205
APA StyleMei, Y., Wang, R., Liu, E., & Soto, I. (2024). Multi-User Tracking in Reconfigurable Intelligent Surface Aided Near-Field Wireless Communications System. Applied Sciences, 14(1), 205. https://doi.org/10.3390/app14010205