Combined Remediation Effects of Pioneer Plants and Solid Waste towards Cd- and As-Contaminated Farmland Soil
Abstract
:1. Introduction
- To study the soil pollution in the contaminated area.
- To study the combined remediation effect of potential plants and solid waste material.
2. Materials and Methods
2.1. Characteristics of Contaminated Soil
2.2. Experimental Design of Combined Remediation
2.3. Analysis Method of Soil Samples
2.4. Analysis Method of Plant Samples
3. Results and Discussion
3.1. Characteristics of Plants
3.2. Changes of Bioavailable Heavy Metals in Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ao, M.; Chen, X.; Deng, T.; Sun, S.; Tang, Y.; Morel, J.L.; Qiu, R.; Wang, S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J. Hazard. Mater. 2022, 424, 127233. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, S.; Ji, D.; Bai, J. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum nigrum L. through Interplant with Low Accumulation Welsh Onion. Int. J. Phytoremediat. 2015, 17, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Diarra, I.; Kotra, K.K.; Prasad, S. Assessment of Biodegradable Chelating Agents in the Phytoextraction of Heavy Metals from Multi-Metal Contaminated Soil. Chemosphere 2021, 273, 128483. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.J.M.; Brooks, R.R. Terrestrial Higher Plants Which Hyperaccumulate Metallic Elements, a Review of Their Distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Mayerová, M.; Petrová, Š.; Madaras, M.; Lipavský, J.; Aimon, T.; Vaněk, T. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Environ. Sci. Pollut. Res. Int. 2017, 24, 14706–14716. [Google Scholar] [CrossRef]
- Yu, G.; Jiang, P.; Fu, X.; Liu, J.; Sunahara, G.I.; Chen, Z.; Xiao, H.; Lin, F.; Wang, X. Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: A long-term field study. Environ. Pollut. 2020, 266, 115408. [Google Scholar] [CrossRef]
- Yang, J.; You, S.; Zheng, J. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals. IOP Conf. Ser. Earth Environ. Sci. 2017, 242, 052003. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, H.; Li, C.; Zhao, Z.; Song, F.; Hu, S. Enhanced Phytoextraction of Heavy Metals from Contaminated Soil by Plant Co-cropping Associated with PGPR. Water Air Soil Pollut. 2015, 226, 29. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Bunkowski, M.; Puschenreiter, M.; Horak, O. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ. Pollut. 2003, 123, 131–138. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Dessaux, Y.; Hinsinger, P.; Lemanceau, P. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 2009, 321, 385–408. [Google Scholar] [CrossRef]
- Gonzaga, M.I.S.; Ma, L.Q.; Santos, J.A.G.; Matias, M.I.S. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Sci. Total Environ. 2009, 407, 4711–4716. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Twardowska, I. Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Plant Soil 2013, 372, 669–681. [Google Scholar] [CrossRef]
- Hu, X.; Kang, J.; Lu, K.; Zhou, R.; Mu, L.; Zhou, Q. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci. Rep. 2014, 4, srep06122. [Google Scholar] [CrossRef]
- Singh, J.; Lee, B. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manag. 2016, 170, 88–96. [Google Scholar] [CrossRef]
- Yousaf, M.T.B.; Nawaz, M.F.; Khawaja, H.F.; Gul, S.; Ali, S.; Ahmad, I.; Rasul, F.; Rizwan, M. Ecophysiological response of early stage Albizia lebbeck to cadmium toxicity and biochar addition. Arab. J. Geosci. 2019, 12, 134. [Google Scholar] [CrossRef]
- Sun, T.; Xu, L.; Zhou, J.; Fan, J.; Chen, Y. Effects of Combined Remediation of Hydroxyapatite and Plants on Microbial Communities in Rhizosphere Soil of Cu/Cd Contaminated Plants. Soils 2016, 48, 946–953. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Wu, A. Remediation effects and mechanisms of typical minerals combined with inorganic amendment on cadmium-contaminated soil: A field study in wheat. Environ. Sci. Pollut. Res. 2022, 30, 38605–38615. [Google Scholar] [CrossRef]
- Klik, B.; Holatko, J.; Jaskulska, I.; Gusiatin, M.Z.; Hammerschmiedt, T.; Brtnicky, M.; Liniauskienė, E.; Baltazar, T.; Jaskulski, D.; Kintl, A.; et al. Bentonite as a Functional Material Enhancing Phytostabilization of Post-Industrial Contaminated Soils with Heavy Metals. Materials 2022, 15, 8331. [Google Scholar] [CrossRef] [PubMed]
- National Soil Survey Office. Soil General Survey Technology in China; National Soil Survey Office: Kolkata, India, 1992.
- Fadili, H.E.; Ali, M.B.; Touach, N.; Mahi, M.E.; Lotfi, E.M. Ecotoxicological and pre-remedial risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in morocco. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100640. [Google Scholar] [CrossRef]
- Xu, J. Establishment of Detection Method for Heavy Metals in Moss. Master’s Thesis, East China Normal University, Shanghai, China, 2016. [Google Scholar]
- Shi, G.; Xia, S.; Liu, C.; Zhang, Z. Cadmium accumulation and growth response to cadmium stress of eighteen plant species. Environ. Sci. Pollut. Res. 2016, 23, 23071–23080. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.; Ghanem, K.; Ghanem, N.; Al-Kolaibe, A. The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J. Microbiol. Biotechnol. 2008, 24, 253–262. [Google Scholar] [CrossRef]
- Shrivastava, A.; Ghosh, D.; Dash, A.; Bose, S. Arsenic contamination in soil and sediment in India: Sources, effects, and remediation. Curr. Pollut. Rep. 2015, 1, 35–46. [Google Scholar] [CrossRef]
- Yao, A.; Wang, Y.; Ling, X.; Chen, Z.; Tang, Y.; Qiu, H.; Ying, R.; Qiu, R. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms. Environ. Geochem. Health 2017, 39, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, J.; Shen, P.; Zhou, Y.; Shen, J.; Jiang, J.; Kong, X.; Gu, X. Comparison of Four Amendments for Arsenic and Cadmium Combined Contaminated Soil. Bull. Environ. Contam. Toxicol. 2020, 105, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hsi, H.; Hseu, Z.; Jheng, S. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2013, 48, 1748–1756. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, T.; Wang, X.; Li, F.; Lv, Y.; Cui, J.; Zeng, X.; Yuan, Y.; Liu, C. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 2018, 195, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Zhang, C.; Ren, S.; Huang, H.; Rong, Q.; Zhou, Y. Remediation of Soil in a Deserted Arsenic Plant Site Using Synthesised Mgalfe-Ldhs. Bull. Environ. Contam. Toxicol. 2021, 107, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Qiu, H.; Tian, T.; Zhan, S.; Deng, T.; Chaney, R.L.; Wang, S.; Tang, Y.; Morel, J.; Qiu, R. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 2011, 83, 1234–1240. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, P.; Zhan, Q.; Hong, L.; Bocharnikova, E.; Matichenkov, V. Regulation of As and Cd Accumulation in Rice by Simultaneous Application of Lime Or Gypsum with Si-Rich Materials. Environ. Sci. Pollut. Res. 2021, 28, 7271–7280. [Google Scholar] [CrossRef]
Plants | Family | Uses |
---|---|---|
Cynodon dactylon | Poaceae | Landscape engineering, phytoextraction remediation |
Conyza canadensis | Asteraceae | Herb, horticulture, diet |
Praxelis clematidea | Asteraceae | Herb, horticulture, spice |
Bidentis pilosa | Asteraceae | Herb, horticulture |
Cucumis melo | Cucurbitaceae | Diet |
Capsicum annuum | Solanaceae | Diet |
Properties | pH | SOM (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | CEC (meq·100 g−1) |
---|---|---|---|---|---|---|
Soil | 6.25 | 13.5 | 663 | 360 | 64 | 6.37 |
Parameter | Cu | Pb | Zn | Cd | Cr | As | Ni |
---|---|---|---|---|---|---|---|
The total amount of heavy metals (mg/kg) | 13.31 | 11.94 | 55.02 | 0.38 | 70.31 | 76.14 | 13.38 |
The bioavailable state content (mg/kg) | 1.71 | 3.18 | 6.80 | 0.25 | 0.14 | 0.13 | 0.13 |
Pi values | 0.38 | 0.34 | 0.55 | 1.90 | 0.78 | 5.08 | 0.33 |
Pollution level | Secure | Secure | Secure | Slight | Alert | Serious | Secure |
Compound | CaO | Fe2O3 | SiO2 | MgO | Al2O3 | MnO | SO3 | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 44.32 | 18.12 | 12.12 | 8.74 | 7.96 | 3.07 | 1.56 | 1.48 | 1.29 |
Compound | SiO2 | MnO | Fe2O3 | Al2O3 | CaO | K2O | MgO | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 44.00 | 23.67 | 22.54 | 6.27 | 0.80 | 0.77 | 0.52 | 0.43 | 0.21 |
Remediation Method | Experimental Design | |
---|---|---|
Phytoremediation | C | B |
Combined remediation | C+M1 | B+M1 |
C+M2 | B+M2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, C.; Yang, H.; Chen, P.; Cao, J. Combined Remediation Effects of Pioneer Plants and Solid Waste towards Cd- and As-Contaminated Farmland Soil. Appl. Sci. 2023, 13, 5695. https://doi.org/10.3390/app13095695
Wu J, Zhang C, Yang H, Chen P, Cao J. Combined Remediation Effects of Pioneer Plants and Solid Waste towards Cd- and As-Contaminated Farmland Soil. Applied Sciences. 2023; 13(9):5695. https://doi.org/10.3390/app13095695
Chicago/Turabian StyleWu, Jiamei, Chenxu Zhang, Huifen Yang, Pan Chen, and Jian Cao. 2023. "Combined Remediation Effects of Pioneer Plants and Solid Waste towards Cd- and As-Contaminated Farmland Soil" Applied Sciences 13, no. 9: 5695. https://doi.org/10.3390/app13095695
APA StyleWu, J., Zhang, C., Yang, H., Chen, P., & Cao, J. (2023). Combined Remediation Effects of Pioneer Plants and Solid Waste towards Cd- and As-Contaminated Farmland Soil. Applied Sciences, 13(9), 5695. https://doi.org/10.3390/app13095695