Screening and Optimization of Fermentation Medium for Bacillus velezensis BP-1 and Its Biocontrol Effects against Peyronellaea arachidicola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micro-Organisms
2.2. Inoculate Suspension and Mode of Fermentation
2.3. Screening of Key Factors in Fermentation Medium of the B. velezensis BP-1 Strain by Single-Factor Experiment
2.3.1. Carbon Sources
2.3.2. Nitrogen Sources
2.3.3. Inorganic Salt Sources
2.4. Experimental Design for the Optimization of Nutrient Medium by Central Composites Design (CCD)
2.5. Study of the Metabolism of the B. velezensis BP-1 Strain in a Submerged Fermentation
2.6. Bioassay Activity of the B. velezensis BP-1 Strain against P. arachidicola In Vitro
2.7. Disease Control Effects of the B. velezensis BP-1 Strain on Peanut Plants in Pot Experiments
- Inoculation with P. arachidicola + B. velezensis BP-1 broth treatment
- B. velezensis BP-1 broth treatment + Inoculation with P. arachidicola
2.8. Statistical Analysis
3. Results
3.1. Single-Factor Screening of Fermentation Medium for B. velezensis BP−1
3.2. Fermentation Medium Optimization by Central Composite Design
3.3. Study of the Metabolism of the B. velezensis BP-1 Strain in Submerged Fermentation
3.4. In Vitro Assay of the B. velezensis BP-1 Strain against P. arachidicola
3.5. Disease Control Efficiency of the B. velezensis BP-1 Strain in Pot Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Lyu, J.; Chen, D. Performance assessment of peanut production in China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 176–188. [Google Scholar] [CrossRef]
- Yu, S.; Yu, G.; Ren, L.; Sun, H.; Cui, X.; You, S.; Wang, H.; Shi, P.; Yu, H.; Liaoning Sandy Land Amelioration and Utilization Research Institute. The Effect of single-seed precision sowing on peanut yield under different planting density. Liaoning Agric. Sci. 2018, 6, 19–22. [Google Scholar]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Wang, D.; Zhou, R.; Yang, F.; Su, W. Analysis of occurrence and epidemic dynamics of peanut web blotch disease in Liaoning Province. Chin. J. Oil Crop Sci. 2013, 35, 80–83. [Google Scholar]
- Li, S.; Xue, X.; Gao, M.; Wang, N.; Cui, X.; Sang, S.; Fan, W.; Wang, Z. Genome Resource for Peanut Web Blotch Causal Agent Peyronellaea arachidicola Strain YY187. Plant Dis. 2021, 105, 1177–1178. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, D.M.; Lichtveld, M.; Mazet, J.A.; Togami, E.; Miller, S.A. Plant health and its effects on food safety and security in a One Health framework: Four case studies. One Health Outlook 2021, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Al-Raish, S.M.; Saeed, E.E.; Sham, A.; Alblooshi, K.; El-Tarabily, K.A.; AbuQamar, S.F. Molecular characterization and disease control of stem canker on royal poinciana (Delonix regia) caused by Neoscytalidium dimidiatum in the United Arab Emirates. Int. J. Mol. Sci. 2020, 21, 1033. [Google Scholar] [CrossRef] [Green Version]
- Gikas, G.D.; Parlakidis, P.; Mavropoulos, T.; Vryzas, Z. Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability 2022, 14, 4056. [Google Scholar] [CrossRef]
- Behlau, F. An overview of citrus canker in Brazil. Trop. Plant Pathol. 2021, 46, 1–12. [Google Scholar] [CrossRef]
- Zapata-Sarmiento, D.H.; Palacios-Pala, E.F.; Rodríguez-Hernández, A.A.; Melchor, D.L.M.; Rodríguez-Monroy, M.; Sepúlveda-Jiménez, G. Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa L.). Biol. Control 2020, 140, 104105. [Google Scholar] [CrossRef]
- Amin, A.; Akbar, M.; Khalil, T.; Akram, W.; Ahmad, A. Antifungal activity of Alternanthera philoxeroides organic solvent extract against plant pathogenic fungi. Pak. J. Bot. 2022, 54, 337–344. [Google Scholar]
- Baptista, J.P.; Teixeira, G.M.; de Jesus, M.L.A.; Bertê, R.; Higashi, A.; Mosela, M.; da Silva, D.V.; de Oliveira, J.P.; Sanches, D.S.; Brancher, J.D.; et al. Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP. Sci. Rep. 2022, 12, 17401. [Google Scholar] [CrossRef] [PubMed]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef] [Green Version]
- Hynes, R.K.; Boyetchko, S.M. Research initiatives in the art and science of biopesticide formulations. Soil Biol. Biochem. 2006, 38, 845–849. [Google Scholar] [CrossRef]
- Bailey, K.; Boyetchko, S.; Längle, T. Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol. Control 2010, 52, 221–229. [Google Scholar] [CrossRef]
- Zou, Q.; Ren, Z.; Gao, S.; Zhou, H.; Zhao, J.; Liu, E. Isolation and Identification of Bacillus subtilis YN145 against Magnaporthe oryzae and Its Antimicrobial Activities. Chin. J. Biol. Control 2017, 33, 421. [Google Scholar]
- Zhang, C.; Zhao, Y.; Xie, J.; Lin, Y.; Pei, X.; Liu, X. Screening and Identification of Bacillus velezensis Strain BP-1 and the Field Control Efficiency against Peanut Web Blotch. Chin. J. Biol. Control 2021, 37, 259–265. [Google Scholar]
- Schisler, D.; Slininger, P.; Behle, R.; Jackson, M. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 2004, 94, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Gomes, R.J.; Ida, E.I.; Spinosa, W.A. Nutritional supplementation with amino acids on bacterial cellulose production by Komagataeibacter intermedius: Effect analysis and application of response surface methodology. Appl. Biochem. Biotechnol. 2022; online ahead of print. [Google Scholar]
- Vlajkov, V.; Anđelić, S.; Pajčin, I.; Grahovac, M.; Budakov, D.; Jokić, A.; Grahovac, J. Medium for the production of Bacillus-based biocontrol agent effective against aflatoxigenic Aspergillus flavus: Dual approach for modelling and optimization. Microorganisms 2022, 10, 1165. [Google Scholar] [CrossRef]
- Dioha, I.; Ikeme, C.; Nafi’u, T.; Soba, N. Effect of carbon to nitrogen ratio on biogas production. Int. Res. J. Nat. Sci. 2013, 1, 1–10. [Google Scholar]
- Wu, X.; Yao, W.; Zhu, J.; Miller, C. Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour. Technol. 2010, 101, 4042–4047. [Google Scholar] [CrossRef]
- Link, H.; Weuster-Botz, D. Medium Formulation and Development. In Comprehensive Biotechnology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 119–134. [Google Scholar] [CrossRef]
- Shafi, J.; Mingshan, J.; Zhiqiu, Q.; Xiuwei, L.; Zumin, G.; Xinghai, L.; Yang, Z.; Peiwen, Q.; Hongzhe, T.; Wunan, C.; et al. Optimization of Bacillus aerius strain JS-786 cell dry mass and its antifungal activity against Botrytis cinerea using response surface methodology. Arch. Biol. Sci. 2017, 69, 469–480. [Google Scholar] [CrossRef]
- Marin, D.H.; Romero, R.A.; Guzman, M.; Sutton, T.B. Black Sigatoka: An increasing threat to banana cultivation. Plant Dis. 2003, 87, 208–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-López, C.; Chairez, I.; Fernández-Linares, L. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresour. Technol. 2016, 212, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zou, P.; Miao, L.; Qi, J.; Song, L.; Zhu, L.; Xu, X. Medium optimization for the production of anti-cyanobacterial substances by Streptomyces sp. HJC-D1 using response surface methodology. Environ. Sci. Pollut. Res. 2014, 21, 5983–5990. [Google Scholar] [CrossRef] [PubMed]
- Latha, S.; Sivaranjani, G.; Dhanasekaran, D. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit. Rev. Microbiol. 2017, 43, 567–582. [Google Scholar] [CrossRef]
- Abdulrasheed, M.; Zulkharnain, A.; Zakaria, N.N.; Roslee, A.; Khalil, K.A.; Napis, S.; Convey, P.; Gomez-Fuentes, C.; Ahmad, S. Response surface methodology optimization and kinetics of diesel degradation by a cold-adapted Antarctic bacterium, Arthrobacter sp. strain AQ5-05. Sustainability 2020, 12, 6966. [Google Scholar] [CrossRef]
- Granato, D.; de Araújo Calado, V.M. The use and importance of design of experiments (DOE) in process modelling in food science and technology. In Mathematical and Statistical Methods in Food Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014; Volume 1, pp. 1–18. [Google Scholar]
- Bhattacharya, S. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. In Response Surface Methodology in Engineering Science; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sa, R. The Antimicrobial Activity Substances and Disease Prevention Mechanism of the Endophytic Antagonistic Bacterium N6–34 from Poplar; Shandong Agricultural University: Taian, China, 2018. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers Pt Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- BMG LABTECH GmbH. Using the SPECTROstar Nano for Testing Free Amino Nitrogen Content in Alcoholic Beverages. News-Medical. Available online: https://www.bmglabtech.com (accessed on 1 February 2023).
- Wen, Z.; Liu, Z.; Hou, Y.; Liu, C.; Gao, F.; Zheng, Y.; Chen, F. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis. Enzym. Microb. Technol. 2015, 78, 10–17. [Google Scholar] [CrossRef]
- Gao, X.; He, Q.; Jiang, Y.; Huang, L. Optimization of nutrient and fermentation parameters for antifungal activity by Streptomyces lavendulae Xjy and its biocontrol efficacies against Fulvia fulva and Botryosphaeria dothidea. J. Phytopathol. 2016, 164, 155–165. [Google Scholar] [CrossRef]
- Ahsan, T.; Chen, J.; Wu, Y.; Irfan, M. Application of response surface methodology for optimization of medium components for the production of secondary metabolites by Streptomyces diastatochromogenes KX85AMB. Express 2017, 7, 96. [Google Scholar]
- Kim, Y.S.; Lee, Y.; Cheon, W.; Park, J.; Kwon, H.-T.; Balaraju, K.; Kim, J.; Yoon, Y.J.; Jeon, Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Sci. Rep. 2021, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; Matar, S.; Abo-Zaid, G. Production of Bacillus velezensis Strain GB1 as a Biocontrol Agent and Its Impact on Bemisia tabaci by Inducing Systemic Resistance in a Squash Plant. Horticulturae 2022, 8, 511. [Google Scholar] [CrossRef]
- Mosela, M.; Andrade, G.; Massucato, L.R.; Almeida, S.R.d.A.; Nogueira, A.F.; Filho, R.B.D.L.; Zeffa, D.M.; Mian, S.; Higashi, A.Y.; Shimizu, G.D.; et al. Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Sci. Rep. 2022, 12, 15284. [Google Scholar] [CrossRef] [PubMed]
- Garkovenko, A.V.; Vasilyev, I.Y.; Ilnitskaya, E.V.; Radchenko, V.V.; Asaturova, A.M.; Kozitsyn, A.E.; Tomashevich, N.S.; Milovanov, A.V.; Grigoreva, T.V.; Shternshis, M.V. Draft genome sequence of Bacillus velezensis BZR 336g, a plant growth-promoting antifungal biocontrol agent isolated from winter wheat. Microbiol. Resour. Announc. 2020, 9, e00450-20. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.; Dubey, M.; Jensen, B.; Karlsson, M. Clonostachys rosea to control plant diseases. In Microbial Bioprotectants for Plant Disease Management; Köhl, J., Ravensberg, W., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 429–471. [Google Scholar]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological control of plant diseases—What has been achieved and what is the direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Purama, R.K.; Goyal, A. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostocmesenteroides NRRL B-640 using statistical approach. Bioresour. Technol. 2008, 99, 7108–7114. [Google Scholar] [CrossRef] [PubMed]
- Tays, C.; Guarnieri, M.T.; Sauvageau, D.; Stein, L.Y. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 2018, 9, 2239. [Google Scholar] [CrossRef]
- Grant, C.; Cubadda, F.; Carcea, M.; Pogna, N.E.; Gazza, L. Vitamins, Minerals, and Nutritional Value of Durum Wheat. In Durum Wheat; Elsevier: Amsterdam, The Netherlands, 2012; pp. 125–137. [Google Scholar]
- Jacoby, R.P.; Martyn, A.; Kopriva, S. Exometabolomic profiling of bacterial strains as cultivated using Arabidopsis root extract as the sole carbon source. Mol. Plant-Microbe Interact. 2018, 31, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Warshel, A. Simulating the fidelity and the three Mg mechanism of pol η and clarifying the validity of transition state theory in enzyme catalysis. Proteins Struct. Funct. Bioinform. 2017, 85, 1446–1453. [Google Scholar] [CrossRef]
- Tian, Z.; Hou, L.; Hu, M.; Gao, Y.; Li, D.; Fan, B.; Wang, F.; Li, S. Optimization of Sporulation Conditions for Bacillus subtilis BSNK-5. Processes 2022, 10, 1133. [Google Scholar] [CrossRef]
- Chen, J.; Lan, X.; Jia, R.; Hu, L.; Wang, Y. Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Streptomyces Alfalfae XN-04. Microorganisms 2022, 10, 1854. [Google Scholar] [CrossRef]
- Nouby, M.; Mathivanan, D.; Srinivasan, K. A combined approach of complex eigenvalue analysis and design of experiments (DOE) to study disc brake squeal. Int. J. Eng. Sci. Technol. 2009, 1, 254–271. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Li, P. The relations among reducing sugar, pH, dry weight of mycelium and production during the liquid fermentation of Marasmius androsaceus. Edible Fungi China 2002, 21, 37–38. [Google Scholar]
- Dai, Y.; Wang, Y.-H.; Li, M.; Zhu, M.-L.; Wen, T.-Y.; Wu, X.-Q. Medium optimization to analyze the protein composition of Bacillus pumilus HR10 antagonizing Sphaeropsis sapinea. AMB Express 2022, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Zalila-Kolsi, I.; Kessentini, S.; Tounsi, S.; Jamoussi, K. Optimization of Bacillus amyloliquefaciens BLB369 Culture Medium by Response Surface Methodology for Low Cost Production of Antifungal Activity. Microorganisms 2022, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Tsalgatidou, P.C.; Thomloudi, E.E.; Baira, E.; Papadimitriou, K.; Skagia, A.; Venieraki, A.; Katinakis, P. Integrated genomic and metabolomic analysis illuminates key secreted metabolites produced by the novel endophyte Bacillus halotolerans Cal. l. 30 involved in diverse biological control activities. Microorganisms 2022, 10, 399. [Google Scholar] [CrossRef] [PubMed]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Standard Order | Run Order | a | b | c | Observed Inhibition Zone % | Predicted Values Inhibition Zone % |
---|---|---|---|---|---|---|
5 | 1 | 5 | 10 | 0.5 | 55.61 | 58.00 |
9 | 2 | 10 | 5 | 0.5 | 53.90 | 55.00 |
2 | 3 | 15 | 5 | 1 | 54.98 | 55.00 |
3 | 4 | 5 | 15 | 1 | 56.45 | 60.00 |
7 | 5 | 5 | 10 | 1.5 | 51.76 | 55.00 |
10 | 6 | 10 | 15 | 0.5 | 71.54 | 75.00 |
6 | 7 | 15 | 10 | 0.5 | 90.55 | 95.76 |
15 | 8 | 10 | 10 | 1.5 | 78.66 | 80.12 |
8 | 9 | 15 | 10 | 1.5 | 51.65 | 54.55 |
11 | 10 | 10 | 5 | 1.5 | 45.32 | 48.00 |
1 | 11 | 5 | 5 | 1 | 41.51 | 45.50 |
13 | 12 | 10 | 10 | 1 | 68.54 | 70.10 |
4 | 13 | 15 | 15 | 1 | 73.54 | 75.16 |
12 | 14 | 10 | 15 | 1.5 | 47.54 | 50.00 |
14 | 15 | 10 | 10 | 1 | 65.65 | 67.33 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 1631.77 | 181.308 | 19.52 | 0.002 |
Linear | 3 | 815.58 | 271.862 | 29.27 | 0.001 |
Semolina (a) | 1 | 277.65 | 277.655 | 29.89 | 0.003 |
Peanut Root Extract (b) | 1 | 147.75 | 147.748 | 15.91 | 0.010 |
MgSO4 (c) | 1 | 390.18 | 390.182 | 42.00 | 0.001 |
Square | 3 | 201.43 | 67.143 | 7.23 | 0.029 |
a2a | 1 | 37.36 | 37.358 | 4.02 | 0.101 |
b2b | 1 | 156.16 | 156.160 | 16.81 | 0.009 |
c2c | 1 | 8.75 | 8.747 | 0.94 | 0.376 |
2-Way Interaction | 3 | 614.76 | 204.919 | 22.06 | 0.003 |
a2b | 1 | 2.77 | 2.772 | 0.30 | 0.608 |
a2c | 1 | 532.69 | 532.686 | 57.34 | 0.001 |
b2 c | 1 | 79.30 | 79.299 | 8.54 | 0.033 |
Error | 5 | 46.45 | 9.289 | ||
Lack-of-Fit | 3 | 42.48 | 14.159 | 7.13 | 0.125 |
Pure Error | 2 | 3.97 | 1.985 | ||
Total | 14 | 1678.22 | |||
Model summary | S = 3.04784 | R-Sq = 97.23% | R-sq(adj) = 92.25% | R-sq(pre)58.97 |
Term | Coef | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Constant | 63.28 | 1.76 | 35.96 | 0.000 | |
Semolina flour (a) | 5.89 | 1.08 | 5.47 | 0.003 | 1.00 |
Peanut Root Extract (b) | 4.30 | 1.08 | 3.99 | 0.010 | 1.00 |
MgSO4 (c) | −6.98 | 1.08 | −6.48 | 0.001 | 1.00 |
a2a | −3.18 | 1.59 | −2.01 | 0.101 | 1.01 |
b2b | −6.50 | 1.59 | −4.10 | 0.009 | 1.01 |
c2c | 1.54 | 1.59 | 0.97 | 0.376 | 1.01 |
a2b | 0.83 | 1.52 | 0.55 | 0.608 | 1.00 |
a2c | −11.54 | 1.52 | −7.57 | 0.001 | 1.00 |
b2 c | −4.45 | 1.52 | −2.92 | 0.033 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, T.; Liang, C.; Yu, S.; Pei, X.; Xie, J.; Lin, Y.; Liu, X.; Umair, M.; Zang, C. Screening and Optimization of Fermentation Medium for Bacillus velezensis BP-1 and Its Biocontrol Effects against Peyronellaea arachidicola. Appl. Sci. 2023, 13, 4653. https://doi.org/10.3390/app13084653
Ahsan T, Liang C, Yu S, Pei X, Xie J, Lin Y, Liu X, Umair M, Zang C. Screening and Optimization of Fermentation Medium for Bacillus velezensis BP-1 and Its Biocontrol Effects against Peyronellaea arachidicola. Applied Sciences. 2023; 13(8):4653. https://doi.org/10.3390/app13084653
Chicago/Turabian StyleAhsan, Taswar, Chunhao Liang, Shuyi Yu, Xue Pei, Jinhui Xie, Ying Lin, Xiaozhou Liu, Muhammad Umair, and Chaoqun Zang. 2023. "Screening and Optimization of Fermentation Medium for Bacillus velezensis BP-1 and Its Biocontrol Effects against Peyronellaea arachidicola" Applied Sciences 13, no. 8: 4653. https://doi.org/10.3390/app13084653
APA StyleAhsan, T., Liang, C., Yu, S., Pei, X., Xie, J., Lin, Y., Liu, X., Umair, M., & Zang, C. (2023). Screening and Optimization of Fermentation Medium for Bacillus velezensis BP-1 and Its Biocontrol Effects against Peyronellaea arachidicola. Applied Sciences, 13(8), 4653. https://doi.org/10.3390/app13084653