Detecting Arcing Faults in Switchgear by Using Deep Learning Techniques
Abstract
:1. Introduction
- The goal of this study is to improve how deep learning (DL) techniques can be used to find arcing faults in switchgear. In particular, the study looks at how well 1D-CNN, LSTM, and a model that combines 1D-CNN and LSTM work. The motivation behind this research is to enhance the safety and reliability of power systems by accurately identifying arcing faults, which are a common cause of switchgear failure.
- One significant contribution of this study is the development of a novel hybrid approach for arcing fault detection. The hybrid model combines the advantages of the 1D-CNN and LSTM models, allowing for more accurate and efficient identification of arcing faults. This is the first time that the hybrid technique is applied to arcing fault detection in switchgear, making this research novel and valuable.
- We have compared the different DL models used in this study to figure out which is the best way to find arcing faults. Through extensive experimentation, the hybrid approach (1D-CNN-LSTM) was found to be superior to the other methods in arcing fault identification. This highlights the importance of considering a hybrid approach to detecting arcing faults in switchgear.
- The evaluation of the different techniques in both the time and frequency domains is another important part of this study. This is a new way of doing things that has not been done before in studies that used the same DL techniques. By conducting the research in both time and frequency domains, we were able to obtain a more comprehensive understanding of the performance of the different DL models in arcing fault detection.
- The hybrid model has proven to be effective in rapidly finding arcing defects and distinguishing them from other types of flaws. This is crucial in ensuring the reliability and safety of power systems. Overall, the hybrid approach is considered the optimum model for arcing fault detection in both the time and frequency domains.
2. Materials and Methods
2.1. Proposed Methods
2.1.1. Data Collection
- Ultra TEV Plus
- Ultra TEV Plus 2
- Ultra Probe 9000
- Ultra Probe 10,000
2.1.2. Pre-Processing
2.1.3. 1D CNN
2.1.4. LSTM Structure
2.1.5. 1D-CNN-LSTM
3. Performance Metrics
Predictive Arcing Findings (0) | Predictive Non-Arcing Findings (1) | |
---|---|---|
Actual Arcing Findings (0) | TP | FP |
Actual Non-Arcing Findings (1) | FN | TN |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.; Zhang, J.; Fan, X. Device for online monitoring of insulation faults in high-voltage switchgears. Int. J. Distrib. Sens. Networks 2021, 17, 1550147721999284. [Google Scholar] [CrossRef]
- Prévé, C.; Maladen, R.; Dakin, G.; Gentils, F.; Piccoz, D. Dielectric stress, design and validation of MV switchgear. In Proceedings of the CIRED 2019 Conference, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Bityukov, O.V.; Vil’, V.A.; Merkulova, V.M.; Nikishin, G.I.; Terent’Ev, A.O. Silica gel mediated oxidative C–O coupling of β-dicarbonyl compounds with malonyl peroxides in solvent-free conditions. Pure Appl. Chem. 2017, 90, 7–20. [Google Scholar] [CrossRef]
- Ghassemi, M. Accelerated insulation aging due to fast, repetitive voltages: A review identifying challenges and future research needs. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1558–1568. [Google Scholar] [CrossRef]
- Alsumaidaee, Y.A.M.; Yaw, C.T.; Koh, S.P.; Tiong, S.K.; Chen, C.P.; Ali, K. Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning. Energies 2022, 15, 6762. [Google Scholar] [CrossRef]
- Prabaharan, N.; Palanisamy, K. A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications. Renew. Sustain. Energy Rev. 2017, 76, 1248–1282. [Google Scholar] [CrossRef]
- Subramaniam, A.; Sahoo, A.; Manohar, S.S.; Raman, S.J.; Panda, S.K. Switchgear Condition Assessment and Lifecycle Management: Standards, Failure Statistics, Condition Assessment, Partial Discharge Analysis, Maintenance Approaches, and Future Trends. IEEE Electr. Insul. Mag. 2021, 37, 27–41. [Google Scholar] [CrossRef]
- Bornare, A.B.; Naikwadi, S.B.; Pardeshi, D.B.; William, P. Preventive Measures to Secure Arc Fault using Active and Passive Protection. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 934–938. [Google Scholar]
- Ishak, S.; Yaw, C.T.; Koh, S.P.; Tiong, S.K.; Chen, C.P.; Yusaf, T. Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine. Energies 2021, 14, 6279. [Google Scholar] [CrossRef]
- Chang, C.-K. Mitigation of high energy arcing faults in nuclear power plant medium voltage switchgear. Nucl. Eng. Technol. 2019, 51, 317–324. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, R.; Yang, J.; Liu, C.; Chen, S.; Zhang, F. A Novel Arc Fault Detector for Early Detection of Electrical Fires. Sensors 2016, 16, 500. [Google Scholar] [CrossRef]
- Lala, H.; Karmakar, S. Detection and Experimental Validation of High Impedance Arc Fault in Distribution System Using Empirical Mode Decomposition. IEEE Syst. J. 2020, 14, 3494–3505. [Google Scholar] [CrossRef]
- Montanari, G.C.; Ghosh, R.; Cirioni, L.; Galvagno, G.; Mastroeni, S. Partial Discharge Monitoring of Medium Voltage Switchgears: Self-Condition Assessment Using an Embedded Bushing Sensor. IEEE Trans. Power Deliv. 2021, 37, 85–92. [Google Scholar] [CrossRef]
- Kumpulainen, L. Aspects and directions of internal arc protection. Vaasan Yilopisto 2016, 71–74. Available online: https://core.ac.uk/download/pdf/197967335.pdf (accessed on 21 March 2023).
- Satpathi, K.; Ukil, A.; Pou, J. Short-circuit fault management in DC electric ship propulsion system: Protection requirements, review of existing technologies and future research trends. IEEE Trans. Transp. Electrif. 2017, 4, 272–291. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zeng, X.; Yu, K.; Che, X.; Liu, F. Research on current transfer arc-extinguishing technology of distribution network. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 2524–2528. [Google Scholar]
- Shekhar, A.; Ramirez-Elizondo, L.; Bandyopadhyay, S.; Mackay, L.; Bauera, P. Detection of Series Arcs Using Load Side Voltage Drop for Protection of Low Voltage DC Systems. IEEE Trans. Smart Grid 2017, 9, 6288–6297. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.; Edward, J.B.; Ravi, K. A review on fault classification methodologies in power transmission systems: Part-I. J. Electr. Syst. Inf. Technol. 2018, 5, 48–60. [Google Scholar] [CrossRef]
- Prasad, A.; Edward, J.B.; Ravi, K. A review on fault classification methodologies in power transmission systems: Part-II. J. Electr. Syst. Inf. Technol. 2018, 5, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Saeed, E.A.; Abdulhassan, K.M.; Khudair, O.Y. Series and Parallel Arc Fault Detection Based on Discrete Wavelet vs. FFT Techniques. Iraqi J. Electr. Electron. Eng. 2020. Available online: https://ijeee.edu.iq/Papers/Vol18-Issue1/1570772477.pdf (accessed on 21 March 2023). [CrossRef]
- Kay, J.A.; Kumpulainen, L. Maximizing protection by minimizing arcing times in medium voltage systems. In Proceedings of the Conference Record of 2012 Annual IEEE Pulp and Paper Industry Technical Conference (PPIC), Portland, OR, USA, 17–21 June 2012. [Google Scholar]
- Zimmerman, K.; Costello, D. Impedance-based fault location experience. In Proceedings of the 2006 IEEE Rural Electric Power Conference, Albuquerque, NM, USA, 9–11 April 2006. [Google Scholar]
- Ngu, E.; Ramar, K. A combined impedance and traveling wave based fault location method for multi-terminal transmission lines. Int. J. Electr. Power Energy Syst. 2011, 33, 1767–1775. [Google Scholar] [CrossRef]
- Çapar, A.; Arsoy, A.B. A performance oriented impedance based fault location algorithm for series compensated transmission lines. Int. J. Electr. Power Energy Syst. 2015, 71, 209–214. [Google Scholar] [CrossRef]
- Andrusca, M.; Adam, M.; Dragomir, A.; Lunca, E.; Seeram, R.; Postolache, O. Condition Monitoring System and Faults Detection for Impedance Bonds from Railway Infrastructure. Appl. Sci. 2020, 10, 6167. [Google Scholar] [CrossRef]
- Węgierek, P.; Kostyła, D.; Lech, M. Directions of Development of Diagnostic Methods of Vacuum Medium-Voltage Switchgear. Energies 2023, 16, 2087. [Google Scholar] [CrossRef]
- Yin, K.; Fang, J.; Mo, W.; Wang, H.; Zhang, T.; Yang, M. Robot Real-time Inspection Method for Compliance Inspection of Switchgear Circuit Breaker Trolley. In Proceedings of the 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou, China, 19–22 November 2021. [Google Scholar]
- Liu, H.; Ren, M.; Huang, W.; Li, W.; Ren, Z.; Dong, M. Insulation Status Diagnosis on Metal-enclosed Switchgear via TEV sensing Network. In Proceedings of the 2017 2nd International Conference on Communication and Information Systems, Wuhan, China, 7–9 November 2017. [Google Scholar]
- Jiao, L.; Zhao, J. A survey on the new generation of deep learning in image processing. IEEE Access 2019, 7, 172231–172263. [Google Scholar] [CrossRef]
- Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [Google Scholar] [CrossRef]
- Fourcade, A.; Khonsari, R. Deep learning in medical image analysis: A third eye for doctors. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Miralles-Pechuán, L.; Kulkarni, S.; Su, J.; Boydell, O. An Overview of Deep Learning in Industry. Data Anal. AI 2020, 65–98. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003019855-5/overview-deep-learning-industry-quan-le-luis-miralles-pechu%C3%A1n-shridhar-kulkarni-jing-su-ois%C3%ADn-boydell (accessed on 21 March 2023).
- Helbing, G.; Ritter, M. Deep Learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 2018, 98, 189–198. [Google Scholar] [CrossRef]
- Somu, N.; Raman, G.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy Rev. 2020, 137, 110591. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017. [Google Scholar]
- Xu, G.; Ren, T.; Chen, Y.; Che, W. A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis. Front. Neurosci. 2020, 14, 578126. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Tarwani, K.M.; Edem, S. Survey on recurrent neural network in natural language processing. Int. J. Eng. Trends Technol. 2017, 48, 301–304. Available online: https://www.researchgate.net/profile/Swathi-Edem/publication/319937209_Survey_on_Recurrent_Neural_Network_in_Natural_Language_Processing/links/5e957cd192851c2f529f5337/Survey-on-Recurrent-Neural-Network-in-Natural-Language-Processing.pdf (accessed on 21 March 2023). [CrossRef]
- Amberkar, A.; Awasarmol, P.; Deshmukh, G.; Dave, P. Speech recognition using recurrent neural networks. In Proceedings of the 2018 International Conference on Current Trends Towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March 2018; pp. 1–4. [Google Scholar]
- Bandara, K.; Bergmeir, C.; Smyl, S. Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Syst. Appl. 2019, 140, 112896. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Liu, Y.; Xue, L.; Wang, J.; Zhang, J.; Wang, J.; Jiang, L.; Cheng, Z. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. J. Pet. Sci. Eng. 2019, 186, 106682. [Google Scholar] [CrossRef]
- Rick, R.; Berton, L. Energy forecasting model based on CNN-LSTM-AE for many time series with unequal lengths. Eng. Appl. Artif. Intell. 2022, 113, 104998. [Google Scholar] [CrossRef]
- Mohammed Alsumaidaee, Y.A.; Yaw, C.T.; Koh, S.P.; Tiong, S.K.; Chen, C.P.; Yusaf, T.; Abdalla, A.N.; Ali, K.; Raj, A.A. Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods. Sensors 2023, 23, 3108. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, X.; Chen, L. Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control. 2018, 47, 312–323. [Google Scholar] [CrossRef]
- Sainath, T.N.; Senior, A.W.; Vinyals, O.; Sak, H. Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks. U.S. Patent 10783900B2, 22 September 2020. Patent and Trademark Office: Washington, DC, USA. Available online: https://patents.google.com/patent/US10783900B2/en (accessed on 21 March 2023).
- Chunju, F.; Xiuhua, D.; Shengfang, L.; Weiyong, Y. An Adaptive Fault Location Technique Based on PMU for Transmission Line. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Tan, J.D.; Dahari, M.; Koh, S.P.; Koay, Y.Y.; Abed, I.A. A new experiential learning electromagnetism-like mechanism for numerical optimization. Expert Syst. Appl. 2017, 86, 321–333. [Google Scholar] [CrossRef]
- Tan, J.D.; Koh, S.P.; Au, M.T.; Tiong, S.K.; Ali, K. Implementation of Voltage Optimization for Sustainable Energy. Indones. J. Electr. Eng. Comput. Sci. 2018, 12, 341–347. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: https://books.google.iq/books?hl=ar&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+Ian,+Yoshua+Bengio,+and+Aaron+Courville.+Deep+learning.+MIT+press,+2016.%E2%80%8F.&ots=MNT6iolBTT&sig=vv2r9JAOsY0CWD5jufDDfPgTAns&redir_esc=y#v=onepage&q=Goodfellow%2C%20Ian%2C%20Yoshua%20Bengio%2C%20and%20Aaron%20Courville.%20Deep%20learning.%20MIT%20press%2C%202016.%E2%80%8F.&f=false (accessed on 21 March 2023).
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
Name of Fault | Number of Samples in TDA | Number of Samples in FDA |
---|---|---|
Arcing Faults | 54 × 20,001 | 53 × 10,001 |
Corona Faults | 41 × 20,001 | 39 × 10,001 |
Tracking Faults | 313 × 20,001 | 40 × 10,001 |
Mechanical Faults | 17 × 20,001 | 16 × 10,001 |
Normal Faults | 13 × 20,001 | 12 × 10,001 |
Total Size | 17.5 Mega-Byte (MB) | 11.3 Mega-Byte (MB) |
1D-CNN | LSTM | 1D-CNN-LSTM |
---|---|---|
1DConv(16-RELU) | LSTM(64) | 1DConv(64-RELU) |
Drop-out | Drop-out | MaxPooling |
MaxPooling | LSTM(32) | Drop-out |
1DConv(32-RELU) | Drop-out | 1DConv(128-RELU) |
Drop-out | Flatten | MaxPooling |
MaxPooling | Dense(32-RELU) | Drop-out |
Flatten | Dense(2) (SoftMax) | LSTM(128) |
Dense(32-RELU) | Drop-out | |
Dense(2) (SoftMax) | LSTM(32) | |
Dense(2) (SoftMax) | ||
Total Parameters | ||
11,922 | 35,298 | 217,986 |
1D-CNN | LSTM | 1D-CNN-LSTM |
---|---|---|
1D Conv(16-RELU) | LSTM(64) | 1D Conv (64) (RELU) |
Drop-out | Drop-out | MaxPooling |
MaxPooling | LSTM(64) | Drop-out |
1D Conv(32-RELU) | Drop-out | 1D Conv(128-RELU) |
Dropout | Flatten | MaxPooling |
Max-Pooling | Dense(32-RELU) | Drop-out |
Flatten | Dense(2) (SoftMax) | LSTM(128) |
Dense(32-RELU) | Dropout | |
Dense(2) (SoftMax) | LSTM(32) | |
Dense(2) (SoftMax) | ||
Total Parameters | ||
5650 | 84,578 | 184,706 |
1D-CNN | LSTM | 1D-CNN-LSTM | ||||
---|---|---|---|---|---|---|
Arcing | Non-Arcing | Arcing | Non-Arcing | Arcing | Non-Arcing | |
Actual Arcing | 43 | 0 | 43 | 0 | 34 | 0 |
Actual non-Arcing | 3 | 260 | 3 | 260 | 0 | 272 |
1D-CNN | LSTM | 1D-CNN-LSTM | ||||
---|---|---|---|---|---|---|
Arcing | Non-Arcing | Arcing | Non-Arcing | Corona | Non-Arcing | |
Actual Arcing | 4 | 0 | 4 | 0 | 10 | 0 |
Actual non-Arcing | 0 | 62 | 0 | 62 | 0 | 56 |
1D-CNN | LSTM | 1D-CNN-LSTM | ||||
---|---|---|---|---|---|---|
Arcing | Non-Arcing | Arcing | Non-Arcing | Arcing | Non-Arcing | |
Actual Arcing | 7 | 0 | 7 | 0 | 10 | 0 |
Actual non- Arcing | 1 | 58 | 1 | 58 | 0 | 56 |
1D-CNN | LSTM | 1D-CNN-LSTM | ||||
---|---|---|---|---|---|---|
Arcing | Non-Arcing | Arcing | Non-Arcing | Arcing | Non-Arcing | |
Actual Arcing | 35 | 0 | 39 | 0 | 35 | 0 |
Actual non-Arcing | 0 | 77 | 0 | 73 | 0 | 77 |
1D-CNN | LSTM | 1D-CNN-LSTM | ||||
---|---|---|---|---|---|---|
Arcing | Non-Arcing | Arcing | Non-Arcing | Arcing | Non-Arcing | |
Actual Arcing | 9 | 0 | 5 | 0 | 9 | 0 |
Actual non-Arcing | 0 | 15 | 0 | 19 | 0 | 15 |
1D-CNN | LSTM | 1D-CNN-LSTM | ||||
---|---|---|---|---|---|---|
Arcing | Non-Arcing | Arcing | Non-Arcing | Arcing | Non-Arcing | |
Actual Arcing | 8 | 1 | 8 | 1 | 9 | 0 |
Actual non-Arcing | 0 | 15 | 0 | 15 | 0 | 15 |
Case Arcing Findings (0) | ||||
Techniques | Accuracy | Sensitivity | Dependability | F1-Measure |
1D-CNN | 98.4 | 100 | 88 | 93 |
LSTM | 98.4 | 100 | 88 | 93 |
1D-CNN-LSTM | 100 | 100 | 100 | 100 |
Case Non-Arcing Findings (1) | ||||
Techniques | Accuracy | Sensitivity | Dependability | F1-Measure |
1D-CNN | 98 | 98 | 100 | 99 |
LSTM | 98 | 98 | 100 | 99 |
1D-CNN-LSTM | 100 | 100 | 100 | 100 |
Case Arcing Findings (0) | ||||
Techniques | Accuracy | Sensitivity | Dependability | F1-Measure |
1D-CNN | 95.8 | 89 | 100 | 94 |
LSTM | 95.8 | 89 | 100 | 94 |
1D-CNN-LSTM | 100 | 100 | 100 | 100 |
Case Non-Arcing Findings (1) | ||||
Techniques | Accuracy | Sensitivity | Dependability | F1-Measure |
1D-CNN | 95.8 | 100 | 94 | 97 |
LSTM | 95.8 | 100 | 100 | 97 |
1D-CNN-LSTM | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed Alsumaidaee, Y.A.; Yaw, C.T.; Koh, S.P.; Tiong, S.K.; Chen, C.P.; Tan, C.H.; Ali, K.; Balasubramaniam, Y.A.L. Detecting Arcing Faults in Switchgear by Using Deep Learning Techniques. Appl. Sci. 2023, 13, 4617. https://doi.org/10.3390/app13074617
Mohammed Alsumaidaee YA, Yaw CT, Koh SP, Tiong SK, Chen CP, Tan CH, Ali K, Balasubramaniam YAL. Detecting Arcing Faults in Switchgear by Using Deep Learning Techniques. Applied Sciences. 2023; 13(7):4617. https://doi.org/10.3390/app13074617
Chicago/Turabian StyleMohammed Alsumaidaee, Yaseen Ahmed, Chong Tak Yaw, Siaw Paw Koh, Sieh Kiong Tiong, Chai Phing Chen, Chung Hong Tan, Kharudin Ali, and Yogendra A. L. Balasubramaniam. 2023. "Detecting Arcing Faults in Switchgear by Using Deep Learning Techniques" Applied Sciences 13, no. 7: 4617. https://doi.org/10.3390/app13074617
APA StyleMohammed Alsumaidaee, Y. A., Yaw, C. T., Koh, S. P., Tiong, S. K., Chen, C. P., Tan, C. H., Ali, K., & Balasubramaniam, Y. A. L. (2023). Detecting Arcing Faults in Switchgear by Using Deep Learning Techniques. Applied Sciences, 13(7), 4617. https://doi.org/10.3390/app13074617