Wear Effect on the Contact between a Metallic Pin and a Rotating Polymeric Specimen
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Production
2.2. Experimental Methods
3. Results
3.1. Polymeric Sheet Characterization
3.2. Metallic Pin Contact Surface
3.3. Polymeric Sheet Contact Surface
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breme, H.; Biehl, V.; Reger, N.; Gawalt, E. Metallic biomaterials: Introduction. In Handbook of Biomaterial Properties; Murphy, W., Black, J., Hastings, G., Eds.; Springer: New York, NY, USA, 2016; pp. 151–158. [Google Scholar]
- Merola, M.; Affatato, S. Materials for hip prostheses: A review of wear and loading considerations. Materials 2019, 12, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamayo, J.A.; Riascos, M.; Vargas, C.A.; Baena, L.M. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021, 7, e06892. [Google Scholar] [CrossRef] [PubMed]
- Cronskär, M.; Bäckström, M.; Rännar, L. Production of customized hip stem prostheses—A comparison between conventional machining and electron beam melting (EBM). Rapid Prototyp. J. 2013, 19, 365–372. [Google Scholar] [CrossRef]
- Yousef, S.; Visco, A.M.; Galtieri, G.; Njuguna, J. Wear characterizations of polyoxymethylene (POM) reinforced with carbon nanotubes (POM/CNTs) using the paraffin oil dispersion technique. JOM 2016, 68, 288–299. [Google Scholar] [CrossRef]
- Surya, M.S.; Prasanthi, G.; Kumar, A.K.; Sridhar, V.K.; Gugulothu, S.K. Optimization of cutting parameters while turning Ti-6Al-4 V using response surface methodology and machine learning technique. Int. J. Interact. Des. Manuf. 2021, 15, 453–462. [Google Scholar] [CrossRef]
- Ahmed, N.; Abdo, B.M.; Darwish, S.; Moiduddin, K.; Pervaiz, S.; Alahmari, A.M.; Naveed, M. Electron beam melting of titanium alloy and surface finish improvement through rotary ultrasonic machining. Int. J. Adv. Manuf. Technol. 2017, 92, 3349–3361. [Google Scholar] [CrossRef]
- Aliprandi, P.; Giudice, F.; Guglielmino, E.; Sili, A. Tensile and creep properties improvement of Ti-6Al-4V alloy specimens produced by Electron Beam Powder Bed Fusion Additive Manufacturing. Metals 2019, 9, 1207. [Google Scholar] [CrossRef] [Green Version]
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for biomedical applications: Performance and functionalization. Eur. Polym. J. 2020, 125, 109529. [Google Scholar] [CrossRef]
- Macuvele, D.L.P.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C 2017, 76, 1248–1262. [Google Scholar] [CrossRef]
- Catauro, M.; Scolaro, C.; Dal Poggetto, G.; Pacifico, S.; Visco, A. wear resistant nanocomposites based on biomedical grade UHMWPE paraffin oil and carbon nano-filler: Preliminary biocompatibility and antibacterial activity investigation. Polymers 2020, 12, 978. [Google Scholar] [CrossRef]
- Visco, A.; Grasso, A.; Recca, G.; Carbone, D.C.; Pistone, A. Mechanical, wear and thermal behavior of polyethylene blended with graphite treated in ball milling. Polymers 2021, 13, 975. [Google Scholar] [CrossRef]
- Dong, H.; Shi, W.; Bell, T. Potential of improving tribological performance of UHMWPE by engineering the Ti6Al4V counterfaces. Wear 1999, 225–229, 146–153. [Google Scholar] [CrossRef]
- Visco, A.; Grasso, A.; Scolaro, C.; Belhamdi, H.; Sili, A. Tribological behavior of UHMWPE (disc) against Ti6Al4V (pin) under different lubrication conditions. Macromol. Symp. 2022, 404, 2100294. [Google Scholar] [CrossRef]
- Belhamdi, H.; Kouini, B.; Grasso, A.; Scolaro, C.; Sili, A.; Visco, A. Tribological behavior of biomedical grade UHMWPE with graphite-based fillers against EBM-Ti6Al4V pin under various lubricating conditions. J. Appl. Polym. Sci. 2022, 139, 52313. [Google Scholar] [CrossRef]
- Barber, H.; Kelly, C.N.; Abar, B.; Allen, N.; Adams, S.B.; Gall, K. Rotational wear and friction of Ti-6Al-4V and CoCrMo against polyethylene and polycarbonate urethane. Biotribology 2021, 26, 100167. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, K.; Xu, L.; Qi, J.; Luo, Y.; Zhang, D. Tribological behavior of Ti6Al4 V alloy swing against UHMWPE under different lubrication. J. Thermoplast. Compos. Mater. 2022, 35, 740–757. [Google Scholar] [CrossRef]
- Tai, Z.; Chen, Y.; An, Y.; Yan, X.; Xue, Q. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 2012, 46, 55–63. [Google Scholar] [CrossRef]
- Guezmil, M.; Bensalah, W.; Mezlini, S. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions. J. Mech. Behav. Biomed. Mater. 2016, 63, 375–385. [Google Scholar] [CrossRef]
- Visco, A.; Giudice, F.; Guglielmino, E.; Scolaro, C.; Sili, A. Experimental investigation of the tribological contact between Ti6Al4V-EBM pin and UHMWPE rotating sheet for prosthetic applications. Metals 2022, 12, 1526. [Google Scholar] [CrossRef]
- Yang, L. Wear coefficient equation for aluminium-based matrix composites against steel disc. Wear 2003, 255, 579–592. [Google Scholar] [CrossRef]
- Qu, J.; Blau, P.J.; Watkins, T.R.; Cavin, O.B.; Kulkarni, N.S. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear 2005, 258, 1348–1356. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, J.-F.; Fang, F.-Z. In vitro evaluation of artificial joints: A comprehensive review. Adv. Manuf. 2019, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Galati, M.; Iuliano, L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf. 2018, 19, 1–20. [Google Scholar] [CrossRef]
- Harun, W.S.W.; Manam, N.S.; Kamariah, M.S.I.N.; Sharif, S.; Zulkifly, A.H.; Ahmad, I.; Miura, H. A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 2018, 331, 74–97. [Google Scholar] [CrossRef]
- Acquesta, A.; Monetta, T. As-built EBM and DMLS Ti-6Al-4V parts: Topography–corrosion resistance relationship in a simulated body fluid. Metals 2020, 10, 1015. [Google Scholar] [CrossRef]
- Miguez Suarez, J.C.; de Biasi, R.S. Effect of gamma irradiation on the ductile-to-brittle transition in ultra-high molecular weight polyethylene. Polym. Degrad. Stab. 2003, 82, 221–227. [Google Scholar] [CrossRef]
- Visco, A.; Yousef, S.; Galtieri, G.; Nocita, D.; Pistone, A.; Njuguna, J. Thermal, Mechanical and rheological behaviors of nanocomposites based on UHMWPE/Paraffin oil/Carbon nanofiller obtained by using different dispersion techniques. JOM 2016, 68, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.C.; Oliveira, J.E.; Lima, S.J.G.; Silva, L.B. Influence of vitamin C on morphological and thermal behaviour of biomedical UHMWPE. Macromol. Symp. 2014, 344, 8–13. [Google Scholar] [CrossRef]
- Mohammadhosseini, A.; Fraser, D.; Masood, S.H.; Jahedi, M. Investigation of wear properties of EBM processed Ti6Al4V with UHMWPE for biomedical applications. Appl. Mech. Mater. 2015, 811, 14–18. [Google Scholar] [CrossRef]
- Boampong, D.K.; Green, S.M.; Unsworth, A. N+ ion implantation of Ti6Al4V alloy and UHMWPE for total joint replacement application. J. App. Biomater. Func. 2003, 1, 164–171. [Google Scholar] [CrossRef]
- Borruto, A. A new material for hip prosthesis without considerable debris release. Med. Eng. Phys. 2010, 32, 908–9131. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction To Error Analysis. The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997; ISBN 0935702423. [Google Scholar]
- Campo, N.; Visco, A.M. Properties of nanocomposites based on polyethylene (UHMWPE) and carbon nanotubes mixed by high-energy ball milling and UV-source irradiated. Int. J. Polym. Anal. Charact. 2012, 17, 144–157. [Google Scholar] [CrossRef]
- Visco, A.M.; Brancato, V.; Torrisi, L.; Cutroneo, M. Employment of carbon nanomaterials for welding polyethylene joints with a Nd:YAG laser. Int. J. Polym. Anal. Charact. 2014, 19, 489–499. [Google Scholar] [CrossRef]
- Visco, A.M.; Torrisi, L.; Campo, N.; Picciotto, A. Comparison of surface modifications induced by ion implantation in UHMWPE. Int. J. Polym. Anal. Charact. 2010, 15, 73–86. [Google Scholar] [CrossRef]
- Extrulen 1020-Product Data Sheet. Available online: https://media.mcam.com/fileadmin/quadrant/documents/QEPP/EU/Product_Data_Sheets_PDF/Medical/MCAM-MEDI-403-A2-Extrulen-1020-EN-PDS-200506.pdf (accessed on 6 March 2023).
- Shen, G.; Fang, F.; Kang, C. Tribological performance of bioimplants: A comprehensive review. Nanotechnol. Precis. Eng. 2018, 1, 107–122. [Google Scholar] [CrossRef]
- Visco, A.; Richaud, E.; Scolaro, C. Ageing of UHMWPE in presence of simulated synovial fluid. Polym. Degrad. Stab. 2021, 189, 109605. [Google Scholar] [CrossRef]
- Myshkin, N.; Kovalev, A. Adhesion and friction of polymers and polymer composites. In Handbook of Polymer Tribology; Sinha, S.K., Ed.; World Scientific: Singapore, 2018; pp. 3–45. [Google Scholar]
- Saravanan, I.; Elaya Perumal, A.; Balasubramanian, V. A study of frictional wear behavior of Ti6Al4V and UHMWPE hybrid composite on TiN surface for bio-medical applications. Tribol. Int. 2016, 98, 179–189. [Google Scholar] [CrossRef]
- Salguero, J.; Vazquez-Martinez, J.; Sol, I.; Batista, M. Application of pin-on-disc techniques for the study of tribological interferences in the dry machining of A92024-T3 (Al–Cu) alloys. Materials 2018, 11, 1236. [Google Scholar] [CrossRef] [Green Version]
Al | V | C | Fe | O | N | H | Ti |
---|---|---|---|---|---|---|---|
Composition of the powder | |||||||
6.0 | 4.0 | 0.03 | 0.1 | 0.1 | 0.001 | <0.003 | Bal. |
Range and limits of composition of the alloy Ti6Al4V ELI—Grade 23 according to ASTM F136 | |||||||
5.5-6.5 | 3.5-4.5 | <0.08 | <0.25 | <0.13 | <0.05 | <0.012 | Bal. |
Melting Temp (°C) | Enthalpy (J/g) | Crystallinity Degree (%) | Hardness (HD) | |
---|---|---|---|---|
Experimental data | 138.2 | 142.4 | 48.95 | 62.5 ± 0.08 |
Reference data [37] | 138 | 168.8 | 58 | 66 |
Lubricating Condition | (a) Weight Measurements [20] | (b) Volume Measurements | ||
---|---|---|---|---|
(dV/dL)s (mm3/m) | Ws (mm3/Nm) | (dV/dL)s (mm3/m) | Ws (mm3/Nm) | |
Dry | 0.00138 | 4.6 × 10−5 (6.2 ∙ 10−5) | 0.00155 | 5.2 × 10−5 |
SSF | 0.00078 | 2.6 × 10−5 (3.6 ∙ 10−5) | 0.00092 | 3.1 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visco, A.; Epasto, G.; Giudice, F.; Scolaro, C.; Sili, A. Wear Effect on the Contact between a Metallic Pin and a Rotating Polymeric Specimen. Appl. Sci. 2023, 13, 4463. https://doi.org/10.3390/app13074463
Visco A, Epasto G, Giudice F, Scolaro C, Sili A. Wear Effect on the Contact between a Metallic Pin and a Rotating Polymeric Specimen. Applied Sciences. 2023; 13(7):4463. https://doi.org/10.3390/app13074463
Chicago/Turabian StyleVisco, Annamaria, Gabriella Epasto, Fabio Giudice, Cristina Scolaro, and Andrea Sili. 2023. "Wear Effect on the Contact between a Metallic Pin and a Rotating Polymeric Specimen" Applied Sciences 13, no. 7: 4463. https://doi.org/10.3390/app13074463
APA StyleVisco, A., Epasto, G., Giudice, F., Scolaro, C., & Sili, A. (2023). Wear Effect on the Contact between a Metallic Pin and a Rotating Polymeric Specimen. Applied Sciences, 13(7), 4463. https://doi.org/10.3390/app13074463