Energy Minimization of New Robotic-Type Above-Knee Prosthesis for Higher Battery Lifetime
Abstract
:1. Introduction
2. Mathematical Model of the Above-Knee Prosthesis
2.1. Design of the New Above-Knee Prosthesis
2.2. Forward Kinematic Model
2.3. Inverse Kinematic Model
2.4. Jacobian of the New Above-Knee Prosthesis
2.5. Dynamic Model
2.6. Stiffness Analysis
2.7. Trajectory Planning
3. Experimental Setup
4. Particle Swarm Optimization
5. Optimization Objectives
6. The Statement of the Optimization Problem
7. Simulation Results
8. Discussion
9. Conclusions
10. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Metts, R.L. 23068 Disability Issues, Trends and Recommendations for the World Bank Protton; The World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Pillai, M.V.; Kazerooni, H.; Hurwich, A. Design of a semi-active knee-ankle prosthesis. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5293–5300. [Google Scholar] [CrossRef]
- Lambrecht, B.G.A.; Kazerooni, H. Design of a semi-active knee prosthesis. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 639–645. [Google Scholar] [CrossRef]
- Carlos, W.; Júnior, S.; Aurélio, M.; De Oliveira, V.; Bonvent, J.-J. Conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees. Res. Biomed. Eng. 2015, 31, 647. [Google Scholar] [CrossRef] [Green Version]
- Kapti, A.O.; Yucenur, M.S. Design and control of an active artificial knee joint. Mech. Mach. Theory 2006, 41, 1477–1485. [Google Scholar] [CrossRef]
- Park, K.; Ahn, H.-J.; Lee, K.-H.; Lee, C.-H. Development and performance verification of a motorized prosthetic leg for stair walking. Appl. Bionics Biomech. 2020, 2020, 8872362. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.; Gabert, L.; Hood, S.; Lenzi, T. A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint. Sci. Robot 2022, 7, eabo3996. [Google Scholar] [CrossRef] [PubMed]
- Waters, R.L.; Perry, J.; Antonelli, D.; Hislop, H. Energy cost of walking of amputees: The influence of level of amputation. J. Bone Joint Surg. Am. 1976, 58, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, A.S.; Kulkarni, S.M. Robotic Leg Prosthesis. In Proceedings of the 2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 12–14 October 2017; pp. 97–103. [Google Scholar]
- Shultz, A.H.; Lawson, B.E.; Goldfarb, M. Running with a powered knee and ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Verstraten, T.; Geeroms, J.; Mathijssen, G.; Convens, B.; Vanderborght, B.; Lefeber, D. Optimizing the power and energy consumption of powered prosthetic ankles with series and parallel elasticity. Mech. Mach. Theory 2017, 116, 419–432. [Google Scholar] [CrossRef]
- Jimenez-Fabian, R.; Geeroms, J.; Flynn, L.; Vanderborght, B.; Lefeber, D. Reduction of the torque requirements of an active ankle prosthesis using a parallel spring. Rob. Auton. Syst. 2017, 92, 187–196. [Google Scholar] [CrossRef]
- Park, J.S. Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions. Mechatronics 1996, 6, 649–663. [Google Scholar] [CrossRef]
- Pellicciari, M.; Berselli, G.; Leali, F.; Vergnano, A. A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics 2013, 23, 326–334. [Google Scholar] [CrossRef]
- Cherelle, P.; Grosu, V.; Flynn, L.; Junius, K.; Moltedo, M.; Vanderborght, B.; Lefeber, D. The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee. Rob. Auton. Syst. 2017, 91, 327–336. [Google Scholar] [CrossRef]
- Wu, S.; Pan, G.; Yu, L. Dynamic walking gait designing for biped robot based on particle swarm optimization. In Proceedings of the 2012 International Conference on Control Engineering and Communication Technology, ICCECT 2012, Shenyang, China, 7–9 December 2012; pp. 372–377. [Google Scholar] [CrossRef]
- Hanifah, R.A.; Toha, S.F.; Hassan, M.K.; Ahmad, S. Power reduction optimization with swarm based technique in electric power assist steering system. Energy 2016, 102, 444–452. [Google Scholar] [CrossRef]
- Kucuk, S. Energy minimization for 3-RRR fully planar parallel manipulator using particle swarm optimization. Mech. Mach. Theory 2013, 62, 129–149. [Google Scholar] [CrossRef]
- Denavit, J.; Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 1955, 22, 215–221. [Google Scholar] [CrossRef]
- Schilling, R.J. Fundamentals of Robotics: Analysis and Control; Prentice Hall: Hoboken, NJ, USA, 1990; Volume 629. [Google Scholar]
- Tsai, L.-W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Alici, G.; Shirinzadeh, B. Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans. Robot. 2005, 21, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Wang, B.; Xuan, D.; Zhao, X.; Chen, J.; Lu, C. Dynamic battery equalization scheme of multi-cell lithium-ion battery pack based on PSO and VUFLC. Int. J. Electr. Power Energy Syst. 2022, 136, 107760. [Google Scholar] [CrossRef]
- Poli, R. Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008, 2008, 685175. [Google Scholar] [CrossRef] [Green Version]
- Shoorehdeli, M.A.; Teshnehlab, M.; Sedigh, A.K. A novel training algorithm in ANFIS structure. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006. [Google Scholar]
- Kiranyaz, S.; Pulkkinen, J.; Gabbouj, M. Multi-dimensional particle swarm optimization in dynamic environments. Expert Syst. Appl. 2011, 38, 2212–2223. [Google Scholar] [CrossRef]
- Cortez, R.; Garrido, R.; Mezura-Montes, E. Spectral Richness PSO algorithm for parameter identification of dynamical systems under non-ideal excitation conditions. Appl. Soft Comput. 2022, 128, 109490. [Google Scholar] [CrossRef]
- Srinivas, T.; Madhusudhan, A.K.K.; Manohar, L.; Stephen Pushpagiri, N.M.; Ramanathan, K.C.; Janardhanan, M.; Nielsen, I. Valkyrie—Design and development of gaits for quadruped robot using particle swarm optimization. Appl. Sci. 2021, 11, 7458. [Google Scholar] [CrossRef]
- Ur-Rehman, R.; Caro, S.; Chablat, D.; Wenger, P. Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: Application to the Orthoglide. Mech. Mach. Theory 2010, 45, 1125–1141. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Joshi, D.; Rakesh, P.K.; Godiyal, A.K. Advances in additive manufacturing processes and their use for the fabrication of lower limb prosthetic devices. Expert Rev. Med. Devices 2023, 20, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Ting, Y.; Tosunoglu, S.; Freeman, R. Torque redistribution methods for fault recovery in redundant serial manipulators. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 1396–1401. [Google Scholar] [CrossRef]
- Jarrett, C.; McDaid, A.J. Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Sup, F.; Varol, H.A.; Mitchell, J.; Withrow, T.J.; Goldfarb, M. Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 638–644. [Google Scholar]
- Bassett, D.; Tudor-Locke, C. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004, 34, 1–8. [Google Scholar]
i | ||||
---|---|---|---|---|
1 | 0 | 0 | 0 | |
2 | 0 | 0 | ||
3 | 90 | 0 | 0 | |
4 | 0 | 0 |
Joints | ||||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | |
1 | 0 | 0.58 | 0 | 1.65 | 0 | 9.95 | 0 | 7.50 |
2 | −0.32 | 0.15 | 0 | 2.85 | 0 | 16 | 0 | 7.50 |
3 | 0 | 0.18 | 0 | 0.65 | 0 | 4.5 | 0 | 7.50 |
Infill Density (%) | (gram) | (gram) | ||||||
---|---|---|---|---|---|---|---|---|
Triangles | Grid | Cubic | Triangles | Grid | Cubic | |||
50 | 2943 | 2871 | 2957 | () | 1118 | 1041 | 1231 | () |
52 | 2951 | 2880 | 2964 | 1125 | 1050 | 1238 | ||
54 | 2960 | 2889 | 2972 | 1135 | 1058 | 1243 | ||
56 | 2968 | 2897 | 2981 | 1142 | 1066 | 1254 | ||
58 | 2959 | 2904 | 2988 | 1148 | 1071 | 1259 | ||
60 | 2965 | 2910 | 2997 | 1153 | 1080 | 1261 | ||
62 | 3006 | 2996 | 3005 | 1259 | 1258 | 1368 | ||
64 | 3013 | 3005 | 3017 | 1264 | 1266 | 1376 | ||
66 | 3023 | 3014 | 3026 | 1273 | 1271 | 1384 | ||
68 | 3031 | 3021 | 3034 | 1281 | 1279 | 1391 | ||
70 | 3039 | 3028 | 3041 | 1289 | 1287 | 1395 | ||
72 | 3048 | 3038 | 3050 | 1292 | 1292 | 1399 | ||
74 | 3057 | 3046 | 3058 | 1299 | 1298 | 1407 | ||
76 | 3066 | 3056 | 3066 | 1311 | 1306 | 1415 | ||
78 | 3074 | 3065 | 3077 | 1318 | 1314 | 1420 | ||
80 | 3083 | 3073 | 3086 | 1325 | 1325 | 1429 | ||
82 | 3091 | 3081 | 3093 | 1329 | 1332 | 1435 | ||
84 | 3100 | 3090 | 3102 | 1332 | 1339 | 1440 | ||
86 | 3108 | 3098 | 3110 | 1346 | 1348 | 1446 | ||
88 | 3115 | 3107 | 3120 | 1354 | 1354 | 1453 | ||
90 | 3126 | 3115 | 3128 | 1363 | 1360 | 1462 | ||
92 | 3133 | 3125 | 3136 | 1369 | 1365 | 1468 | ||
94 | 3144 | 3133 | 3145 | 1376 | 1371 | 1474 | ||
96 | 3151 | 3141 | 3154 | 1382 | 1378 | 1485 | ||
98 | 3159 | 3148 | 3162 | 1388 | 1386 | 1494 | ||
100 | 3290 | 3179 | 3180 | () | 1416 | 1406 | 1506 | () |
Infill Density (%) | (Nm/rad) | (Nm/rad) | (Nm/rad) |
---|---|---|---|
50 | 101,420 | 101,420 | 101,420 |
52 | 101,523 | 101,523 | 101,523 |
54 | 101,833 | 101,833 | 101,833 |
56 | 101,937 | 101,937 | 101,937 |
58 | 102,459 | 102,459 | 102,459 |
60 | 107,875 | 107,875 | 107,875 |
62 | 110,132 | 110,132 | 110,132 |
64 | 110,988 | 110,988 | 110,988 |
66 | 112,233 | 112,233 | 112,233 |
68 | 113,250 | 113,250 | 113,250 |
70 | 114,155 | 114,155 | 114,155 |
72 | 115,741 | 115,741 | 115,741 |
74 | 116,311 | 116,311 | 116,311 |
76 | 117,509 | 117,509 | 117,509 |
78 | 118,214 | 118,214 | 118,214 |
80 | 119,190 | 119,190 | 119,190 |
82 | 121,016 | 121,016 | 121,016 |
84 | 122,399 | 122,399 | 122,399 |
86 | 123,709 | 123,709 | 123,709 |
88 | 124,533 | 124,533 | 124,533 |
90 | 126,543 | 126,543 | 126,543 |
92 | 127,819 | 127,819 | 127,819 |
94 | 129,534 | 129,534 | 129,534 |
96 | 136,240 | 136,240 | 136,240 |
98 | 144,092 | 144,092 | 144,092 |
100 | 155,763 | 155,763 | 155,763 |
Parameters | Symbol | Value | Units |
---|---|---|---|
Rotor Inertia | Jm | 96.6 × 10−7 | kgm2 |
Armature Resistance | Ra | 0.346 | ohm |
Armature Inductance | La | 0.121 | Henry |
Torque Constant | Km | 29.3 × 10−3 | Nm/A |
Back EMF Constant | Kb | 1.18 × 10−2 | V/rad/s |
Armature Voltage | Va | 24 | V |
Gearbox Ratio | gb | 15:1 |
Consumed Powers | Actuator 1 (Watt) | Actuator 2 (Watt) | Actuator 3 (Watt) | Total (Watt) |
---|---|---|---|---|
Minimum power | 16.25 | 14.03 | 0.02 | 30.30 |
Maximum power | 23.78 | 25.21 | 0.03 | 49.02 |
Optimized power | 17 | 15.07 | 0.02 | 32.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ege, M.; Kucuk, S. Energy Minimization of New Robotic-Type Above-Knee Prosthesis for Higher Battery Lifetime. Appl. Sci. 2023, 13, 3868. https://doi.org/10.3390/app13063868
Ege M, Kucuk S. Energy Minimization of New Robotic-Type Above-Knee Prosthesis for Higher Battery Lifetime. Applied Sciences. 2023; 13(6):3868. https://doi.org/10.3390/app13063868
Chicago/Turabian StyleEge, Mucahit, and Serdar Kucuk. 2023. "Energy Minimization of New Robotic-Type Above-Knee Prosthesis for Higher Battery Lifetime" Applied Sciences 13, no. 6: 3868. https://doi.org/10.3390/app13063868
APA StyleEge, M., & Kucuk, S. (2023). Energy Minimization of New Robotic-Type Above-Knee Prosthesis for Higher Battery Lifetime. Applied Sciences, 13(6), 3868. https://doi.org/10.3390/app13063868