Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
1.3. Research Gap and Originality Highlights
2. Model Development
2.1. Demand-Side Model
2.2. Supply-Side Model
3. Data Inventory
4. Results and Discussion
4.1. Prediction of the Monthly Electricity Demand in Zambia
4.2. Supply-Side Analysis
4.2.1. Baseline Scenario
4.2.2. Zambia’s Forecasted Electricity Deficit
4.2.3. Supply-Side Scenario Analysis
- -
- Integration of renewable energy (RE): the total installed capacity shares of renewable energy technologies will increase to 11.89% and 30% in 2024 and 2035, respectively;
- -
- No coal scenario (NC): the share of coal-based power generation decreases to 0% in 2035;
- -
- Emission target scenario: the GHG emissions will decrease by 10%, 20%, 30%, 40%, and 50% in 2035.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesselring, R. The electricity crisis in Zambia: Blackouts and social stratification in new mining towns. Energy Res. Soc. Sci. 2017, 30, 94–102. [Google Scholar] [CrossRef]
- Zambia—Access To Electricity (% Of Population)—2022 Data 2023 Forecast 1990–2020 Historical. Available online: https://tradingeconomics.com/zambia/access-to-electricity-percent-of-population-wb-data.html (accessed on 26 November 2022).
- Greenhouse Gas Emissions Factsheet: Zambia|Global Climate Change. Available online: https://www.climatelinks.org/resources/greenhouse-gas-emissions-factsheet-zambia (accessed on 28 November 2022).
- Abdallah, L.; El-Shennawy, T. Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. J. Eng. 2013, 2013, 845051. [Google Scholar] [CrossRef]
- CO2 and Greenhouse Gas Emissions—Our World in Data. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 26 November 2022).
- Eckstein, D. Global Climate Risk Index 2021; Disaster Displacement: Geneva, Switzerland, 2021. [Google Scholar]
- The Energy Sector Report 2019—Energy Regulation Board. Available online: https://www.erb.org.zm/document/the-energy-sector-report-2019 (accessed on 28 November 2022).
- Discussing Climate Change and Renewable Energy in Zambia—Enelfoundation.org. Available online: https://www.enelfoundation.org/all-news/news/2020/10/discussing-climate-change-and-renewable-energy-in-zambia (accessed on 28 November 2022).
- Zambia Electricity Cost of Service Study Final Summary Consolidated Report Energy Market and Regulatory Consultants Limited (Part of the MRC Group) Draft Final Report; Energy Market and Regulatory Consultants Limited: Edinburgh, UK, 2021.
- Tembo, B.; Merven, B. Policy options for the sustainable development of Zambia’s electricity sector. J. Energy S. Afr. 2013, 24, 16–27. [Google Scholar] [CrossRef]
- Allington, L.; Cannone, C. Selected ‘Starter Kit’ energy system modelling data for Zambia (#CCG). Res. Square 2021. [Google Scholar] [CrossRef]
- Dioha, M.O. Energy system models for sub-saharan african countries—A systematic review. J. Sustain. Energy 2017, 8, 159–168. [Google Scholar]
- Awopone, A.K.; Zobaa, A.F. Analyses of Optimum Generation Scenarios for Sustainable Power Generation in Ghana. 2017. Available online: http://bura.brunel.ac.uk/handle/2438/14137 (accessed on 23 February 2023).
- Boke, M.T.; Moges, S.A.; Dejen, Z.A. Optimizing renewable-based energy supply options for power generation in Ethiopia. PLoS ONE 2022, 17, e0262595. [Google Scholar] [CrossRef]
- Nyoni, K.J. The Zambian Energy Transition (ZET): A Case Study for OsemOSYS and FlexTool Background And Modelling Questions. Res. Square 2022. [Google Scholar] [CrossRef]
- Mwandila, G.; Mwanza, M.; Sikhwivhilu, K.; Siame, J.; Mutanga, S.; Simposya, A. Modeling energy requirements for a biogas-supported decentralized Water treatment systems for communities in chambishi (Zambia) and diepsloot (South Africa) townships. Renew. Energy Focus 2021, 37, 20–26. [Google Scholar] [CrossRef]
- Libanda, B.; Paeth, H. Modelling wind speed across Zambia: Implications for wind energy. Int. J. Climatol. 2022, 43, 772–786. [Google Scholar] [CrossRef]
- Mwanza, M.; Chachak, J.; Çetin, N.; Ülgen, K. Assessment of solar energy source distribution and potential in Zambia. Period. Eng. Nat. Sci. 2017, 5, 103–116. [Google Scholar] [CrossRef]
- Ouedraogo, N.S. Modeling sustainable long-term electricity supply-demand in Africa. Appl. Energy 2017, 190, 1047–1067. [Google Scholar] [CrossRef]
- Malehmirchegini, L.; Farzaneh, H. Demand response modeling in a day-ahead wholesale electricity market in Japan, considering the impact of customer risk aversion and dynamic price elasticity of demand. Energy Rep. 2022, 8, 11910–11926. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018; Available online: https://otexts.com/fpp2/seasonal-arima.html (accessed on 29 November 2022).
- Krey, V.; Havlik, P.; Kishimoto, P.; Fricko, O.; Zilliacus, J.; Gidden, M.; Strubegger, M.; Kartasasmita, G.; Ermolieva, T.; Forsell, N.; et al. MESSAGEix-GLOBIOM Documentation; International Institute for Applied System Analysis (IIASA): Laxenburg, Austria, 2020. [Google Scholar] [CrossRef]
- Abrar, S.; Farzaneh, H. Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach. Energies 2021, 14, 3303. [Google Scholar] [CrossRef]
- Rogner, H. Overview of MESSAGE ix Modeling Framework Introduction to Scenarios and Modelling for Energy Planning. IIASA. Available online: https://docs.messageix.org/en/v1.2.0 (accessed on 23 December 2022).
- ZESCO Limited. Available online: https://www.zesco.co.zm/ (accessed on 30 November 2022).
- Ministry of Energy—MOE. Available online: https://www.moe.gov.zm/ (accessed on 30 November 2022).
- Zambia—Countries & Regions—IEA. Available online: https://www.iea.org/countries/zambia (accessed on 23 December 2022).
- National Renewable Energy Laboratory (NREL) Home Page|NREL. Available online: https://www.nrel.gov/ (accessed on 30 November 2022).
- Energy Regulation Board—A Proactive, Firm & Fair Energy Regulator. Available online: https://www.erb.org.zm/ (accessed on 30 November 2022).
- Zambia Coal Reserves—Data, Chart|TheGlobalEconomy.com. Available online: https://www.theglobaleconomy.com/Zambia/coal_reserves/ (accessed on 20 December 2022).
- Opportunities For Renewable Energy in Zambia; Bundesministerium für Wirtschaft und Klimaschutz: Berlin, Germany, 2019.
- Mphepo Power. Available online: https://www.mphepopower.com/ (accessed on 19 January 2023).
- Ministry of National Development Planning. 7 National Development Plan (2017–2021) Republic of Zambia; Ministry of National Development Planning: Lusaka, Zambia, 2017.
- Global Wind Atlas. Available online: https://globalwindatlas.info/en (accessed on 30 November 2022).
- Jain, P. Coal Power in Zambia: Time to Rethink. South Afr. J. Policy Dev. 2017, 3, 2. [Google Scholar]
Purpose | Focus Sector | Horizon | Methodological Approach | Tool/Techniques Employed | References |
---|---|---|---|---|---|
Modeling energy requirements for biogas-supported decentralized water treatment systems for communities in Chambishi (Zambia) and Diepsloot (South Africa) townships. | Supply | - | Optimization | Buswell mathematical model | [16] |
Modeling of the wind energy potential in Zambia. | Supply | 2031–2050 | Simulation and dynamical downscaling approaches | High CORDEX-Africa models | [17] |
Assessment of solar energy distribution and potential in Zambia. | Supply | - | Simulation | ArcGIS and array model (excel) | [18] |
Scenario analysis of the sustainable development of Zambia’s electricity sector. | Demand and Supply | 2008–2030 | Simulating/accounting/optimization | LEAP/MESSAGE | [10] |
Modeling sustainable long-term electricity supply-demand in Africa. | Demand and Supply | - | Accounting/Simulation | LEAP | [19] |
Input Parameters | Variables | Output |
---|---|---|
Technical data (efficiency, installed capacity, etc.) | Energy flows (inlet and outlet) of technologies | Optimal cost of the system |
Cost data (cost analysis of the system, such as capital and operation costs, etc.) | Optimal energy-generating mix | |
Economic data (interest and inflation rates, externalities, etc.) | Capacity of technologies | GHG emissions |
Energy demand | ||
Environmental data (emission factors, carbon bounds) | ||
Resources availability (reference energy system structure) |
Technology | Flexibility Parameter |
---|---|
Load | −0.1 |
Wind | −0.08 |
Solar PV | −0.05 |
Coal | 0.15 |
Gas CC | 0.5 |
Hydropower | 0.5 |
Oil/Gas Steam | 1 |
Gas CT | 1 |
Hydro | Solar | OIL(FO) 1 | Wind | Coal | OIL(HSD) 2 | |
---|---|---|---|---|---|---|
Investment Costs (ZMW/kW) | 2227 | 1146 | 800 | 2438 | 1900 | 924 |
Variable O&M costs (ZMW/kW) | 4.5 | - | 105.4 | 85.5 | 52.7 | 85.5 |
Fixed Costs (ZMW/kW) | 8.5 | 40 | 20 | 40 | 50 | 20 |
Efficiency (%) | 85 | 33 | 38 | 35 | 40 | 33 |
Operation Factor (%) | 97 | 99 | 70 | 97 | 85 | 70 |
Capacity Factor (%) | 42 | 25 | 80 | 35 | 40 | 80 |
Base Year Generation [MWa] | 1307.4 | 48.6 | 60 | 0 | 163.5 | 45.6 |
Base Year Capacity [MW] | 3500 | 48.6 | 59.97 | 0 | 600 | 45.5 |
Historical Capacity [MW] | 2400 | 89.14 | 150 | 0 | 330 | 84 |
Category | Resource | Annual Potential | Ref. |
---|---|---|---|
Fossil Fuel | Coal | 49.6 [Mt/y] | [30] |
Renewable | Hydro | 6000 [MWa] | [31] |
Wind | 150 [MWa] | [32] | |
Solar | 600 [MWa] | [31] |
MODEL | AIC | BIC | LOG-LIKELIHOOD | RMSE | MAPE | MAE | AICc |
---|---|---|---|---|---|---|---|
ARIMA (2,1,2) (3,1,1) | −459.04 | −432.38 | 238.52 | 38,187.99 | 2.751 | 26,963.92 | −457.69 |
Scenario | Annual Emissions [kt] | LCOE [Cents/kWh] | RE Share [%] * |
---|---|---|---|
Baseline (BL) | 10,444.4 | 7.68 | 45.40 |
Renewable Scenario (RE) | 5059.8 | 8.02 | 73.80 |
No Coal (NC) | 9357.8 | 7.82 | 50.84 |
Scenario | Sub-Scenario | Annual Emissions [kt] | LCOE 1 [Cents/kWh] | RE Share [%] 2 |
---|---|---|---|---|
Emission Targets | 10% | 9400 | 7.98 | 51.20 |
20% | 8355.6 | 8.11 | 54.32 | |
30% | 7311.1 | 8.20 | 57.60 | |
40% | 6266.7 | 8.28 | 61.30 | |
50% | 5222.2 | 8.36 | 65.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daka, P.P.; Farzaneh, H. Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia. Appl. Sci. 2023, 13, 3508. https://doi.org/10.3390/app13063508
Daka PP, Farzaneh H. Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia. Applied Sciences. 2023; 13(6):3508. https://doi.org/10.3390/app13063508
Chicago/Turabian StyleDaka, Precious P., and Hooman Farzaneh. 2023. "Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia" Applied Sciences 13, no. 6: 3508. https://doi.org/10.3390/app13063508
APA StyleDaka, P. P., & Farzaneh, H. (2023). Developing an Integrated Energy Demand-Supply Modeling Framework for Scenario Analysis of the Low Carbon Emission Energy System in Zambia. Applied Sciences, 13(6), 3508. https://doi.org/10.3390/app13063508