Capillary Rise in Layered Soils
Abstract
:1. Introduction
2. Experiments
2.1. Material Properties
2.2. Capillary Rise Experiments
3. Numerical Simulation
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xu, X.; Sun, C.; Qu, Z.; Huang, Q.; Ramos, T.B.; Huang, G. Groundwater recharge and capillary rise in irrigated areas of the upper yellow river basin assessed by an agro-hydrological model. Irrig. Drain. 2016, 64, 587–599. [Google Scholar] [CrossRef]
- Hird, R.; Bolton, M.D. Clarification of capillary rise in dry sand. Eng. Geol. 2017, 230, 77–83. [Google Scholar] [CrossRef]
- Polansky, J.; Kaya, T. An experimental and numerical study of capillary rise with evaporation. Int. J. Therm. Sci. 2015, 91, 25–33. [Google Scholar] [CrossRef]
- Liu, Q.; Yasufuku, N.; Miao, J.; Ren, J. An approach for quick estimation of maximum height of capillary rise. Soils Found. 2014, 54, 1241–1245. [Google Scholar] [CrossRef] [Green Version]
- Wösten, J.H.M.; Pachepsky, Y.; Rawls, W. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Bai, B.; Jiang, S.; Liu, L.; Li, X.; Wu, H. The transport of silica powders and lead ions under unsteady flow and variable injection concentrations. Powder Technol. 2021, 387, 22–30. [Google Scholar] [CrossRef]
- Bai, B.; Nie, Q.; Wu, H.; Hou, J. The attachment-detachment mechanism of ionic/nanoscale/microscale substances on quartz sand in water. Powder Technol. 2021, 394, 1158–1168. [Google Scholar] [CrossRef]
- Bai, B.; Wang, Y.; Rao, D.; Bai, F. The effective thermal conductivity of unsaturated porous media deduced by pore-scale sph simulation. Front. Earth Sci. 2022, 10, 943853. [Google Scholar] [CrossRef]
- Zhu, J.; Mohanty, B.P. Analytical solutions for steady state vertical infiltration. Water Resour. Res. 2002, 38, 20-21–20-25. [Google Scholar] [CrossRef]
- Huang, M.B.; Barbour, S.; Elshorbagy, A.; Zettl, J.; Si, B. Infiltration and drainage processes in multi-layered coarse soils. Can. J. Soil Sci. 2011, 91, 169–183. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.; Zhan, H.; Liu, X.; Su, D.; Kang, S.; Song, X. Water infiltration in layered soils with air entrapment: Modified green-ampt model and experimental validation. J. Hydrol. Eng. 2011, 16, 628–638. [Google Scholar] [CrossRef]
- Serrano, S.E. Modeling infiltration in hysteretic soils. Adv. Water Resour. 1990, 13, 12–23. [Google Scholar] [CrossRef]
- Bloemen, G. Calculation of steady state capillary rise from the groundwater table in multi-layered soil profiles. Z. Pflanz. Bodenkd. 1980, 143, 701–719. [Google Scholar] [CrossRef]
- Shokri, N.; Lehmann, P.; Or, D. Evaporation from layered porous media. J. Geophys. Res. Solid Earth 2010, 115, 258–273. [Google Scholar] [CrossRef] [Green Version]
- Japanese Geotechnical Society. Laboratory Testing Standards of Geomaterials; Japanese Geotechnical Society: Tokyo, Japan, 2017. [Google Scholar]
- BS EN ISO 14688-2; Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a Classification. British Standards Instituation: London, UK, 2004.
- Amer, A.M.; Awad, A. Permeability of cohesionless soils. J. Geotech. Eng. Div. ASCE 1974, 100, 1309–1316. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T.; Simunek, J.; Leij, F.; Sejna, M. The Retc Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Version 1.0.; Epa Report 600/2-91/065; U.S. Salinity Laboratory, USDA, ARS: Riverside, CA, USA, 1991. [Google Scholar]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; van Genuchten, M.; Šejna, M. Development and applications of the hydrus and stanmod software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
Soil | θs | θr | α (cm−1) | n | l |
---|---|---|---|---|---|
k-7 | 0.408 | 0 | 0.016 | 3.420 | 2.1 |
k-8 | 0.420 | 0.001 | 0.005 | 1.929 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Luo, Z.; Sun, H.; Li, H.; Liu, Q.; Liu, H. Capillary Rise in Layered Soils. Appl. Sci. 2023, 13, 3374. https://doi.org/10.3390/app13063374
Zhao Z, Luo Z, Sun H, Li H, Liu Q, Liu H. Capillary Rise in Layered Soils. Applied Sciences. 2023; 13(6):3374. https://doi.org/10.3390/app13063374
Chicago/Turabian StyleZhao, Zhenhua, Zhenjiang Luo, Hongjie Sun, Haitao Li, Qiang Liu, and Haiyan Liu. 2023. "Capillary Rise in Layered Soils" Applied Sciences 13, no. 6: 3374. https://doi.org/10.3390/app13063374
APA StyleZhao, Z., Luo, Z., Sun, H., Li, H., Liu, Q., & Liu, H. (2023). Capillary Rise in Layered Soils. Applied Sciences, 13(6), 3374. https://doi.org/10.3390/app13063374