Generative Music with Partitioned Quantum Cellular Automata
Abstract
:1. Introduction
2. Background
2.1. Cellular Automata (CA)
2.2. Quantum Computing
3. Partitioned Quantum Cellular Automata
3.1. One-Dimensional PQCA
3.2. Two-Dimensional PQCA
4. Music Mapping
4.1. One-Dimensional PQCA Mapping
- Code A (bits 1 and 2) defines the source of the notes. There are four different sources to choose from (Figure 19).
- Code B (bits 3, 4 and 5) defines the duration of the cluster. There are eight different durations to choose from (Figure 20).
- Code C (bit 6) = rest switch.
- Code D (bits from 7 to 18) defines the notes of the cluster; these notes are picked from the source defined by code A
4.2. Two-Dimensional PQCA Mapping
4.2.1. Calculating the Pitch of a Cell
4.2.2. Placing the Pitches in the Frame: Wait and Duration
5. Real Examples from Qubism
5.1. Composing Rhythmic Clusters
5.2. Composing Musical Forms
5.3. Implementation Considerations
6. Concluding Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miranda, E.R. (Ed.) Handbook of Artificial Intelligence for Music Foundations, Advanced Approaches, and Developments for Creativity; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Cope, D. Experiments in Musical Intelligence; A-R Editions: Madison, WI, USA, 1996. [Google Scholar]
- Woods, W.A. Transition network grammars for natural language analysis. Commun. ACM 1970, 13, 591–606. [Google Scholar] [CrossRef]
- Kuang, J.; Yang, T. Popular Song Composition Based on Deep Learning and Neural Networks. J. Math. 2021, 2021, 7164817. [Google Scholar] [CrossRef]
- Graupe, D. Deep Learning Neural Networks; World Scientific: Singapore, 2016. [Google Scholar]
- Hernandez-Olivan, C.; Beltran, J.R. Music Composition with Deep Learning: A Review. arXiv 2021, arXiv:2108.12290. [Google Scholar]
- Romero, J.; Ekart, A.; Martins, T.; Correia, J. (Eds.) Artificial Intelligence in Music, Sound, Art and Design; LNCS 12103; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Waugh, I. Datamusic Fractal Music. Music. Technol. 1991, October, 62–66. [Google Scholar]
- Epstein, J.M.; Axtell, R. The Fractal Geometry of Nature; W. H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Miranda, E.R. Cellular Automata Music: An Interdisciplinary Project. J. New Music. Res. 1993, 22, 3–21, (formerly known as Interface). [Google Scholar] [CrossRef]
- Shiff, J.L. Cellular Automata: A Discrete View of the World; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferova, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 19, 10856–10915. [Google Scholar] [CrossRef]
- Kerenidis, I.; Prakash, A. Quantum recommendation systems. In Proceedings of the 2017 Conference on Innovations in Theoretical Computer Science, Berkeley, CA, USA, 9–11 January 2017. [Google Scholar] [CrossRef]
- Oshiro, S. QuiKo: A Quantum Beat Generation Application. In Quantum Computer Music Foundations, Methods and Advanced Concepts; Miranda, E.R., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Clemente, G.; Crippa, A.; Jansen, K.; Tuysuz, C. New Directions in Quantum Music: Concepts for a Quantum Keyboard and the Sound of the Ising Model. In Quantum Computer Music Foundations, Methods and Advanced Concepts; Miranda, E.R., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Weaver, J. Quantum Music Playground Tutorial. In Quantum Computer Music Foundations, Methods and Advanced Concepts; Miranda, E.R., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Arrighi, P.; Grattage, J. Partitioned quantum cellular automata are intrinsically universal. arXiv 2010, arXiv:1010.2335. [Google Scholar] [CrossRef]
- Miranda, E.R.; Miller-Bakewell, H. Cellular Automata Music Composition: From Classical to Quantum. In Quantum Computer Music Foundations, Methods and Advanced Concepts; Miranda, E.R., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Clark, S.; Rehding, A. Music in Time: Phenomenology, Perception, Performance; Harvard University Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Dustan, R. The Composer’s Handbook: A Guide to the Principles of Musical Composition; Leopold Classic Library: South Yarra, VIC, Australia, 2017. [Google Scholar]
- Beyls, P. The musical universe of cellular automata. In Proceedings of the International Computer Music Conference (ICMC), Columbus, OH, USA, 2–5 November 1989; pp. 34–41. [Google Scholar]
- Hoffmann, P. Towards an automated art: Algorithmic processes in Xenakis’ compositions. Contemp. Music. Rev. 2002, 21, 121–131. [Google Scholar] [CrossRef]
- Miranda, E.R. Cellular automata music: From sound synthesis to musical forms. In Evolutionary Computer Music; Miranda, E.R., Biles, J.A., Eds.; Springer: London, UK, 2007. [Google Scholar]
- Love, P.; Boghosian, B. From Dirac to Diffusion: Decoherence in Quantum Lattice Gases. Quantum Inf. Process. 2005, 4, 335–354. [Google Scholar] [CrossRef]
- Preston, K.; McDuff, M.J.B. Modern Cellular Automata: Theory and Applications; Springer International Publishing: Cham, Switzerland, 1984. [Google Scholar]
- Hogeweg, P. Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 1988, 27, 81–100. [Google Scholar] [CrossRef]
- Ermentrout, G.B.; Edelstein-Keshet, L. Cellular automata approaches to biological modeling. J. Theor. Biol. 1993, 160, 97–133. [Google Scholar] [CrossRef]
- Epstein, J.M.; Axtell, R. Growing Artificial Societies: Social Sciences from the Bottom Up; The MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Miranda, E.R. Generating Source Streams for Extralinguistic Utterances. J. Audio Eng. Soc. 2002, 50, 165–172. [Google Scholar]
- Burks, A.W. (Ed.) Essays on Cellular Automata; University of Illinois Press: Champaign, IL, USA, 1971. [Google Scholar]
- Gardner, M. The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 1970, 223, 120–123. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary Edition; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Ekert, A.; Macchiavello, C. An Overview of Quantum Computing. In Unconventional Models of Computation; Calude, C.S., Casti, J., Dinneen, M.J., Eds.; Springer: Singapore, 1997. [Google Scholar]
- Sutor, R.S. Dancing with Qubits: How Quantum Computing Works and How It Can Change the Word; Packt: Birmingham, UK, 2019. [Google Scholar]
- Farrelly, T. A review of quantum cellular automata. Quantum 2020, 4, 368. [Google Scholar] [CrossRef]
- Inokuchi, S.; Mizoguchi, Y. Generalized partitioned quantum cellular automata and quantization of classical CA. arXiv 2003, arXiv:quant-ph/0312102. [Google Scholar]
- Miranda, E.R. Creative Quantum Computing: Inverse FFT Sound Synthesis, Adaptive Sequencing and Musical Composition. In Handbook of Unconventional Computing; Adamatzky, A., Ed.; World Scientific: Singapore, 2021. [Google Scholar]
- Python Programming Language Documentation. Available online: https://www.python.org/ (accessed on 27 December 2022).
- Qiskit Documentation. Available online: https://qiskit.org/ (accessed on 27 December 2022).
- PQCA Repository. Available online: https://github.com/iccmr-quantum/pqca (accessed on 27 December 2022).
- PQCA Tutorial. Available online: https://github.com/iccmr-quantum/PQCA_Tutorial (accessed on 27 December 2022).
- IBM Quantum Computer Resources. Available online: https://www.ibm.com/quantum (accessed on 27 December 2022).
- Sivarajah, S.; Dilkes, S.; Cowtan, A.; Simmons, W.; Edgington, A.; Duncan, R. t|ket〉: A retargetable compiler for NISQ devices. Quantum Sci. Technol. 2020, 6, 014003. [Google Scholar] [CrossRef]
- Music 21 Documentation. Available online: https://web.mit.edu/music21/ (accessed on 27 December 2022).
- Bilotta, E.; Pantano, P.; Talarico, V. Music Generation through Cellular Automata: How to Give Life to Strange Creatures. Research Gate. Available online: https://www.researchgate.net/publication/2324938_Music_Generation_through_Cellular_Automata_How_to_Give_Life_to_Strange_Creatures (accessed on 28 December 2022).
- Burraston, D.M. Generative Music and Cellular Automata. Ph.D. Thesis, University of Technology, Sydney, Australia, 2006. Available online: https://www.noyzelab.com/uploads/1/2/6/1/126197943/dburraston-genmusic_ca-phd-thesis.pdf (accessed on 28 December 2022).
- Delarosa, O.; Soros, L.B. Growing MIDI Music Files Using Convolutional Cellular Automata. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December 2020. [Google Scholar] [CrossRef]
- Nedjah, N.; Bezerra, H.D.; Mourelle, L.M. Automatic generation of harmonious music using cellular automata based hardware design. Integration 2018, 61, 205–223. [Google Scholar] [CrossRef]
- Gibney, E. Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 2019, 574, 461–463. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Broughton, M.; Cotler, J.; Chen, S.; Mohseni, M.; Neven, H.; Babbush, R.; Kueng, R.; Preskill, J.; McClean, J.R. Quantum advantage in learning from experiments. Science 2022, 367, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, E.R.; Shaji, H. Generative Music with Partitioned Quantum Cellular Automata. Appl. Sci. 2023, 13, 2401. https://doi.org/10.3390/app13042401
Miranda ER, Shaji H. Generative Music with Partitioned Quantum Cellular Automata. Applied Sciences. 2023; 13(4):2401. https://doi.org/10.3390/app13042401
Chicago/Turabian StyleMiranda, Eduardo Reck, and Hari Shaji. 2023. "Generative Music with Partitioned Quantum Cellular Automata" Applied Sciences 13, no. 4: 2401. https://doi.org/10.3390/app13042401
APA StyleMiranda, E. R., & Shaji, H. (2023). Generative Music with Partitioned Quantum Cellular Automata. Applied Sciences, 13(4), 2401. https://doi.org/10.3390/app13042401