Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum undulatum Vent. Naturalized in the Azores Archipelago (Portugal)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Sample Preparation
2.4. Pollen Analysis
2.5. Determination of HMF of Honey by High-Performance Liquid Chromatography—Ultraviolet Detector (HPLC-UV)
2.6. Phenolic Content of Honey
2.7. Antioxidant Capacity of Honey
2.8. Anti-Aging Capacity of Honey
2.9. Statistical Analysis
3. Results and Discussion
3.1. Pollen Analysis
3.2. HMF Content
3.3. Phenolic Content of Honey
3.4. Antioxidant Capacity of Honey
3.5. Anti-Aging Capacity of Honey
3.6. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittosporum Undulatum | Flora-On. Available online: https://flora-on.pt/?q=Pittosporum+undulatum (accessed on 23 November 2022).
- Medeiros, J.R.; Campos, L.B.; Mendonça, S.C.; Davin, L.B.; Lewis, N.G. Composition and Antimicrobial Activity of the Essential Oils from Invasive Species of the Azores, Hedychium Gardnerianum and Pittosporum Undulatum. Phytochemistry 2003, 64, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, P.; Medeiros, V.; Gil, A.; Silva, L. Distribution, Habitat and Biomass of Pittosporum Undulatum, the Most Important Woody Plant Invader in the Azores Archipelago. For. Ecol. Manag. 2011, 262, 178–187. [Google Scholar] [CrossRef]
- Ferreira, N.; de Sousa, I.G.M.; Luis, T.C.; Currais, A.J.M.; Figueiredo, A.C.; Costa, M.M.; Lima, A.S.B.; Santos, P.A.G.; Barroso, J.G.; Pedro, L.G.; et al. Pittosporum Undulatum Vent. Grown in Portugal: Secretory Structures, Seasonal Variation and Enantiomeric Composition of Its Essential Oil. Flavour Fragr. J. 2007, 22, 1–9. [Google Scholar] [CrossRef]
- Mendes, M.D.; Lima, A.S.; Trindade, H.; Correia, A.I.D.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C. ISSR Molecular Characterization and Leaf Volatiles Analysis of Pittosporum Undulatum Vent. Naturalized in the Azores Archipelago (Portugal). Ind. Crops Prod. 2011, 33, 710–719. [Google Scholar] [CrossRef]
- SIARAM:: Incenso. Available online: http://siaram.azores.gov.pt/flora/infestantes/incenso/2.html (accessed on 25 January 2023).
- De Medeiros, J.M.R.; Macedo, M.; Contancia, J.P.; Nguyen, C.; Cunningham, G.; Miles, D.H. Antithrombin Activity of Medicinal Plants of the Azores. J. Ethnopharmacol. 2000, 72, 157–165. [Google Scholar] [CrossRef]
- MEL DOS AÇORES-DOP-MEL DOS AÇORES-DOP-Instituto de Alimentação e Mercados Agrícolas-Portal. Available online: https://portal.azores.gov.pt/web/iama/-/mel-dos-acores-dop (accessed on 15 December 2022).
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Apic. Res. 2013, 27, 677–689. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef]
- Erban, T.; Shcherbachenko, E.; Talacko, P.; Harant, K. The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors. J. Nat. Prod. 2019, 82, 1217–1226. [Google Scholar] [CrossRef]
- Sakač, M.B.; Jovanov, P.T.; Marić, A.Z.; Pezo, L.L.; Kevrešan, Ž.S.; Novaković, A.R.; Nedeljković, N.M. Physicochemical Properties and Mineral Content of Honey Samples from Vojvodina (Republic of Serbia). Food Chem. 2019, 276, 15–21. [Google Scholar] [CrossRef]
- Bobis, O.; Moise, A.R.; Ballesteros, I.; Reyes, E.S.; Durán, S.S.; Sánchez-Sánchez, J.; Cruz-Quintana, S.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Eucalyptus Honey: Quality Parameters, Chemical Composition and Health-Promoting Properties. Food Chem. 2020, 325, 126870. [Google Scholar] [CrossRef]
- Pauliuc, D.; Ciursă, P.; Ropciuc, S.; Dranca, F.; Oroian, M. Physicochemical Parameters Prediction and Authentication of Different Monofloral Honeys Based on FTIR Spectra. J. Food Compos. Anal. 2021, 102, 104021. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Queiroz, M.; Rodrigues, M.; Barros, A.I.R.N.A. Evaluation of the Phytochemistry and Biological Activity of Grape (Vitis Vinifera L.) Stems: Toward a Sustainable Winery Industry. In Polyphenols in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 381–394. [Google Scholar]
- Machado, N.F.L.; Domínguez-Perles, R. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. molecules 2017, 48, 286. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; José, M.; Barros, A.I.R.N.A. Industrial Crops & Products Potential Application of Grape (Vitis Vinifera L.) Stem Extracts in the Cosmetic and Pharmaceutical Industries: Valorization of a by-Product. Ind. Crop. Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Apraj, V.D.; Pandita, N.S. Evaluation of Skin Anti-Aging Potential of Citrus Reticulata Blanco Peel. Pharmacogn. Res. 2016, 8, 160. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cádiz-Gurrea, M.D.L.L.; Nunes, M.A.; Pinto, D.; Vinha, A.F.; Linares, I.B.; Oliveira, M.B.P.P.; Carretero, A.S. Cosmetics. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 393–427. ISBN 9780128135723. [Google Scholar]
- Habib, H.M.; Kheadr, E.; Ibrahim, W.H. Inhibitory Effects of Honey from Arid Land on Some Enzymes and Protein Damage. Food Chem. 2021, 364, 130415. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Santos-Buelga, C.; Era, B.; Maria González-Paramás, A.; Tuberoso, C.I.G.; Medda, R.; Pintus, F.; Fais, A. Sardinian Honeys as Sources of Xanthine Oxidase and Tyrosinase Inhibitors. Food Sci. Biotechnol. 2017, 27, 139–146. [Google Scholar] [CrossRef]
- Karaçelik, A.A.; Sahin, H. Determination of Enzyme Inhibition and Antioxidant Activity in Some Chestnut Honeys. Foods Raw Mater. 2018, 6, 210–218. [Google Scholar] [CrossRef]
- Ersoy, E.; Eroglu, E.; Boga, M.; Abdullah, M. Industrial Crops & Products Anti-Aging Potential and Anti-Tyrosinase Activity of Three Hypericum Species with Focus on Phytochemical Composition by LC–MS/MS. Ind. Crops Prod. 2019, 141, 111735. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Liceaga, A.M. Potential Role of Natural Bioactive Peptides for Development of Cosmeceutical Skin Products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef]
- Aumeeruddy, M.Z.; Aumeeruddy-Elalfi, Z.; Neetoo, H.; Zengin, G.; Blom van Staden, A.; Fibrich, B.; Lambrechts, I.A.; Rademan, S.; Szuman, K.M.; Lall, N.; et al. Pharmacological Activities, Chemical Profile, and Physicochemical Properties of Raw and Commercial Honey. Biocatal. Agric. Biotechnol. 2019, 18, 101005. [Google Scholar] [CrossRef]
- Alimentarius, C. Revised Codex Standard for Honey. Codex Stan 2001, 12, 1982. [Google Scholar]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.; Barros, A.I.R.N.A.; Nunes, F.M. A Novel, Direct, Reagent-Free Method for the Detection of Beeswax Adulteration by Single-Reflection Attenuated Total Reflectance Mid-Infrared Spectroscopy. Talanta 2013, 107, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Küçük, M.; Kolayli, S.; Karaoǧlu, Ş.; Ulusoy, E.; Baltaci, C.; Candan, F. Biological Activities and Chemical Composition of Three Honeys of Different Types from Anatolia. Food Chem. 2007, 100, 526–534. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Maia, M.; Karabournioti, S.; Gatzias, I.; Karabagias, V.K.; Badeka, A.V. Palynological, Physicochemical, Biochemical and Aroma Fingerprints of Two Rare Honey Types. Eur. Food Res. Technol. 2020, 246, 1725–1739. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I. Variation of the Polyphenolic Composition and Antioxidant Capacity of Freshly Prepared Pomegranate Leaf Infusions over One-Day Storage. Antioxidants 2021, 10. [Google Scholar] [CrossRef]
- Breda, C.; Barros, A.I.; Gouvinhas, I. Characterization of Bioactive Compounds and Antioxidant Capacity of Portuguese Craft Beers. Int. J. Gastron. Food Sci. 2022, 27, 100473. [Google Scholar] [CrossRef]
- Shim, K.B.; Yoon, N.Y. Inhibitory Effect of Fucofuroeckol-A from Eisenia Bicyclis on Tyrosinase Activity and Melanin Biosynthesis in Murine Melanoma B16F10 Cells. Fish. Aquat. Sci. 2018, 21, 35. [Google Scholar] [CrossRef]
- Feás, X.; Pires, J.; Iglesias, A.; Estevinho, M.L. Characterization of Artisanal Honey Produced on the Northwest of Portugal by Melissopalynological and Physico-Chemical Data. Food Chem. Toxicol. 2010, 48, 3462–3470. [Google Scholar] [CrossRef] [PubMed]
- Önür, İ.; Misra, N.N.; Barba, F.J.; Putnik, P.; Lorenzo, J.M.; Gökmen, V.; Alpas, H. Effects of Ultrasound and High Pressure on Physicochemical Properties and HMF Formation in Turkish Honey Types. J. Food Eng. 2018, 219, 129–136. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, K.T.; Lin, J.A.; Chen, Y.T.; Chen, Y.A.; Wu, J.T.; Hsieh, C.W. Recent Advances in Processing Technology to Reduce 5-Hydroxymethylfurfural in Foods. Trends Food Sci. Technol. 2019, 93, 271–280. [Google Scholar] [CrossRef]
- Castiglioni, S.; Stefano, M.; Astolfi, P.; Carloni, P. Chemometric Approach to the Analysis of Antioxidant Properties and Colour of Typical Italian Monofloral Honeys. Int. J. Food Sci. Technol. 2017, 52, 1138–1146. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and Properties of Apis Mellifera Honey: A Review. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Brugnerotto, P.; Silva, B.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Quality, Composition and Health-Protective Properties of Citrus Honey: A Review. Food Res. Int. 2021, 143, 110268. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant Activity of Portuguese Honey Samples: Different Contributions of the Entire Honey and Phenolic Extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Alves, A.; Ramos, A.; Gonçalves, M.M.; Bernardo, M.; Mendes, B. Antioxidant Activity, Quality Parameters and Mineral Content of Portuguese Monofloral Honeys. J. Food Compos. Anal. 2013, 30, 130–138. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- María Muñoz Jáuregui, A.; Alvarado-Ortíz Ureta, C.; Blanco Blasco, T.; Castañeda Castañeda, B.; Ruiz Quiroz, J.; Alvarado Yarasca, Á.; Alvarado-Ortiz Ureta, C. Determinación de Compuestos Fenólicos, Flavonoides Totales y Capacidad Antioxidante En Mieles Peruanas de Diferentes Fuentes Florales. Rev. la Soc. Química del Perú 2014, 80, 287–297. [Google Scholar] [CrossRef]
- Ghorab, A.; Rodríguez-Flores, M.S.; Nakib, R.; Escuredo, O.; Haderbache, L.; Bekdouche, F.; Seijo, M.C. Sensorial, Melissopalynological and Physico-Chemical Characteristics of Honey from Babors Kabylia’s Region (Algeria). Foods 2021, 10, 225. [Google Scholar] [CrossRef]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef]
- Gonçalves, J.; Ribeiro, I.; Marçalo, J.; Rijo, P.; Faustino, C.; Pinheiro, L. Physicochemical, Antioxidant and Antimicrobial Properties of Selected Portuguese Commercial Monofloral Honeys. J. Food Nutr. Res. 2018, 6, 645–654. [Google Scholar] [CrossRef]
- Jerković, I.; Radonić, A.; Kranjac, M.; Zekić, M.; Marijanović, Z.; Gudić, S.; Kliškić, M. Red Clover (Trifolium Pratense L.) Honey: Volatiles Chemical-Profiling and Unlocking Antioxidant and Anticorrosion Capacity. Chem. Pap. 2016, 70, i. [Google Scholar] [CrossRef]
- Osés, S.M.; Cantero, L.; Puertas, G.; Fernández-Muiño, M.Á.; Sancho, M.T. Antioxidant, Antimicrobial and Anti-Inflammatory Activities of Ling-Heather Honey Powder Obtained by Different Methods with Several Carriers. LWT 2022, 159, 113235. [Google Scholar] [CrossRef]
- Sousa, C.; Gouvinhas, I.; Barreira, D.; Carvalho, M.T.; Vilela, A.; Lopes, J.; Martins-Lopes, P.; Barros, A.I. ‘Cobrançosa’ Olive Oil and Drupe: Chemical Composition at Two Ripening Stages. J. Am. Oil Chem. Soc. 2014, 91, 599–611. [Google Scholar] [CrossRef]
- Jantakee, K.; Tragoolpua, Y. Activities of Different Types of Thai Honey on Pathogenic Bacteria Causing Skin Diseases, Tyrosinase Enzyme and Generating Free Radicals. Biol. Res. 2015, 48, 1–11. [Google Scholar] [CrossRef]
- Silva, A.M.; Garcia, J.; Dall’Acqua, S.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Eco-Friendly Insights on Kiwiberry Leaves Valorization through in-Vitro and in-Vivo Studies. Ind. Crops Prod. 2022, 184, 115090. [Google Scholar] [CrossRef]
- Bahadır Acıkara, Ö.; Ilhan, M.; Kurtul, E.; Šmejkal, K.; Küpeli Akkol, E. Inhibitory Activity of Podospermum Canum and Its Active Components on Collagenase, Elastase and Hyaluronidase Enzymes. Bioorg. Chem. 2019, 93, 103330. [Google Scholar] [CrossRef]
- Oulebsir, C.; Mefti-Korteby, H.; Djazouli, Z.-E.; Zebib, B.; Merah, O. Essential Oil of Citrus Aurantium L. Leaves: Composition, Antioxidant Activity, Elastase and Collagenase Inhibition. Agronomy 2022, 12, 1466. [Google Scholar] [CrossRef]
- Olivares-Tenorio, M.L.; Verkerk, R.; van Boekel, M.A.J.S.; Dekker, M. Thermal Stability of Phytochemicals, HMF and Antioxidant Activity in Cape Gooseberry (Physalis Peruviana L.). J. Funct. Foods 2017, 32, 46–57. [Google Scholar] [CrossRef]
Samples | Predominant Pollen (>30%) | Secondary Pollen (16–30%) | Minority Pollen (3–15%) | |||
---|---|---|---|---|---|---|
Species | Percentage (%) | Species | Percentage (%) | Species | Percentage (%) | |
1 | Pittosporum undulatum Vent. | 51 | - | - | Eucalyptus spp. | 12 |
Trifolium spp. | 8 | |||||
Castanea sativa Mill. | 7 | |||||
Acacia spp. | 5 | |||||
Scrophularia spp. | 5 | |||||
Lathyrus spp. | 3 | |||||
2 | Pittosporum undulatum Vent. | 51 | Castanea sativa Mill. | 19 | Acacia spp. | 9 |
Eucalyptus globulus Labill. | 7 | |||||
Ranunculus spp. | 3 | |||||
3 | Pittosporum undulatum Vent. | 48 | Castanea sativa Mill. | 21 | Acacia spp. | 14 |
Eucalyptus globulus Labill. | 9 | |||||
Ranunculus spp. | 3 | |||||
4 | Pittosporum undulatum Vent. | 65 | Eucalyptus spp. | 17 | Raphanus raphanistrum L. | 5 |
Acacia spp. | 3 | |||||
5 | Pittosporum undulatum Vent. | 50 | Castanea sativa Mill. | 24 | Trifolium spp. | 8 |
Acacia spp. | 7 | |||||
Eucalyptus globulus Labill. | 5 | |||||
6 | Pittosporum undulatum Vent. | 69 | - | - | Acacia spp. | 11 |
Eucalyptus globulus Labill. | 10 | |||||
Castanea sativa Mill. | 3 |
Samples | 1 | 2 | 3 | 4 | 5 | 6 | p-Value | |
---|---|---|---|---|---|---|---|---|
Quality parameter | HMF (mg/kg) | 13.94 ± 0.11 e | 10.67 ± 0.04 c | 9.78 ± 0.02 b | 15.37 ± 0.02 f | 12.72 ± 0.04 d | 5.20 ± 0.041 | *** |
Phenolic content | Total phenols (mg GA/100 g) | 30.31 ± 0.42 c | 26.01 ± 0.87 bc | 23.28 ± 1.37 ab | 21.37 ± 1.35 a | 25.87 ± 0.00 b | 20.83 ± 1.42 a | *** |
Ortho-diphenols (mg GA/100 g) | 28.47 ± 0.59 e | 22.82 ± 0.24 b | 24.91 ± 0.35 c | 21.25 ± 0.12 a | 26.96 ± 0.00 d | 27.29 ± 0.47 d | *** | |
Flavonoids (mg CAT/100 g) | 7.67 ± 0.84 d | 6.78 ± 0.00 bc | 7.67 ± 0.84 bc | 7.23 ± 0.42 bc | 5.88 ± 0.35 ab | 4.41 ± 0.35 a | ** |
Samples | 1 | 2 | 3 | 4 | 5 | 6 | p-Value | |
---|---|---|---|---|---|---|---|---|
Antioxidant capacity | DPPH (mmol T/100 g) | 0.362 ± 0.007 b | 0.447 ± 0.022 c | 0.039 ± 0.007 a | 0.045 ± 0.004 a | 0.050 ± 0.010 a | 0.098 ± 0.003 a | *** |
ABTS (mmol T/100 g) | 0.346 ± 0.020 c | 0.203 ± 0.016 b | 0.092 ± 0.001 a | 0.079 ± 0.002 a | 0.102 ± 0.002 a | 0.129 ± 0.005 a | *** | |
FRAP (mmol T/100 g) | 0.566 ± 0.010 d | 0.612 ± 0.010 c | 0.335 ± 0.013 b | 0.321 ± 0.003 b | 0.184 ± 0.005 a | 0.178 ± 0.003 a | *** | |
Anti-aging capacity | Tyrosinase inhibition (%) | 9.37 ± 0.20 bc | 4.36 ± 0.28 a | 6.34 ± 0.59 a | 4.65 ± 0.95 a | 6.89 ± 0.06 ab | 9.87 ± 0.70 b | *** |
Elastase inhibition (%) | 45.88 ± 0.65 b | 37.59 ± 2.16 a | 41.28 ± 0.33 ab | 38.70 ± 2.85 ab | 42.72 ± 2.84 ab | 39.85 ± 1.20 ab | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, S.; Maia, M.; Barros, A.; Gouvinhas, I. Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum undulatum Vent. Naturalized in the Azores Archipelago (Portugal). Appl. Sci. 2023, 13, 1788. https://doi.org/10.3390/app13031788
Santos S, Maia M, Barros A, Gouvinhas I. Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum undulatum Vent. Naturalized in the Azores Archipelago (Portugal). Applied Sciences. 2023; 13(3):1788. https://doi.org/10.3390/app13031788
Chicago/Turabian StyleSantos, Soraia, Miguel Maia, Ana Barros, and Irene Gouvinhas. 2023. "Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum undulatum Vent. Naturalized in the Azores Archipelago (Portugal)" Applied Sciences 13, no. 3: 1788. https://doi.org/10.3390/app13031788
APA StyleSantos, S., Maia, M., Barros, A., & Gouvinhas, I. (2023). Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum undulatum Vent. Naturalized in the Azores Archipelago (Portugal). Applied Sciences, 13(3), 1788. https://doi.org/10.3390/app13031788