Frequency-Based Adaptive Interpolation Filter in Intra Prediction
Abstract
:1. Introduction
2. Previous Works
2.1. An Overview of Reference Sample Filtering for Video Coding Standards
2.2. Related Studies
3. Proposed Method
3.1. Design of 8-Tap Interpolation Filter
3.2. Frequency-Based Adaptive Interpolation Filter Selection
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bross, B.; Chen, J.; Liu, S.; Wang, Y.-K. Versatile Video Coding (Draft 10), document JVET-T2001, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29. In Proceedings of the 20th JVET Meeting, Online, 7–16 October 2020. [Google Scholar]
- H.264 and ISO/IEC 14496-10; Advanced Video Coding (AVC), Standard ITU-T Recommendation. ITU-T: Geneva, Switzerland, 2003. Available online: https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=6312 (accessed on 20 January 2023).
- Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 560–576. [Google Scholar] [CrossRef] [Green Version]
- High Efficient Video Coding (HEVC), Standard ITU-T Recommendation, H.265 and ISO/IEC 23008-2, April 2013. Available online: https://www.itu.int/rec/T-REC-H.265 (accessed on 28 April 2022).
- Sze, V.; Budagavi, M.; Sullivan, G.J. High Efficiency Video Coding: Algorithms and Architectures; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wien, M. High Efficiency Video Coding: Coding Tools and Specification; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Bossen, F.; Li, X.; Suehring, K. AHG Report: Test Model Software Development (AHG3), document JVET-S0003, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11. In Proceedings of the 19th JVET Meeting, Online, 22 June–1 July 2020. [Google Scholar]
- Browne, A.; Chen, J.; Ye, Y.; Kim, S.H. Algorithm description for Versatile Video Coding and Test Model 14 (VTM 14), document JVET-W2002, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29. In Proceedings of the 23rd JVET Meeting, Online, 7–16 July 2021. [Google Scholar]
- Bross, B.; Wang, Y.-K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.-R. Overview of the Versatile Video Coding (VVC) Standard and its Applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [Google Scholar] [CrossRef]
- Huang, Y.-W.; An, J.; Haung, H.; Li, X.; Hsiang, S.-T.; Zhang, K.; Gao, H.; Ma, J.; Chubach, O. Block Partitioning Structure in the VVC Standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3818–3833. [Google Scholar] [CrossRef]
- Pfaff, J.; Filippov, A.; Liu, S.; Zhao, X.; Chen, J.; De-Luxán-Hernández, S.; Wiegand, T.; Rufitskiy, V.; Ramasubramonian, A.K.; Van der Auwera, G. Intra Prediction and Mode Coding in VVC. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3834–3847. [Google Scholar] [CrossRef]
- Chien, W.-J.; Zhang, L.; Winken, M.; Li, X.; Liao, R.-L.; Gao, H.; Hsu, C.-W.; Liu, H.; Chen, C.-C. Motion Vector Coding and Block Merging in the Versatile Video Coding Standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3848–3861. [Google Scholar] [CrossRef]
- Yang, H.; Chen, H.; Chen, J.; Esenlik, S.; Sethuraman, S.; Xiu, X.; Alshina, E.; Luo, J. Subblock-Based Motion Derivation and Inter Prediction Refinement in the Versatile Video Coding Standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3862–3877. [Google Scholar] [CrossRef]
- Zhao, X.; Kim, S.-H.; Zhao, Y.; Egilmez, H.E.; Koo, M.; Liu, S.; Lainema, J.; Karczewicz, M. Transform Coding in the VVC Standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3878–3890. [Google Scholar] [CrossRef]
- Schwarz, H.; Coban, M.; Karczewicz, M.; Chuang, T.-D.; Bossen, F.; Alshin, A.; Lainema, J.; Helmrich, C.R.; Wiegand, T. Quantization and Entropy Coding in the Versatile Video Coding (VVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3891–3906. [Google Scholar] [CrossRef]
- Ugur, K.; Alshin, A.; Alshina, E.; Bossen, F.; Han, W.-J.; Park, J.-H.; Lainema, J. Interpolation filter design in HEVC and its coding efficiency-complexity analysis. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar]
- Lainema, J.; Bossen, F.; Han, W.-J.; Min, J.; Ugur, K. Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1792–1801. [Google Scholar] [CrossRef]
- Filippov, A.; Rufitskiy, V. Non-CE3: Cleanup of Interpolation Filtering for Intra Prediction, document JVET-P0599, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11. In Proceedings of the 16th JVET Meeting, Geneva, Switzerland, 1–11 October 2019. [Google Scholar]
- Filippov, A.; Rufitskiy, V.; Chen, J.; Van der Auwera, G.; Ramasubramonian, A.K.; Seregin, V.; Hsieh, T.; Karczewicz, M. CE3: A Combination of Tests 3.1.2 and 3.1.4 for Intra Reference Sample Interpolation Filter, document JVET-L0628, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11. In Proceedings of the 12th JVET Meeting, Macao, China, 3–12 October 2018. [Google Scholar]
- Filippov, A.; Rufitskiy, V.; Chen, J.; Alshina, E. Intra prediction in the emerging VVC video coding standard. In Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020. [Google Scholar]
- Matsuo, S.; Takamura, S.; Jozawa, H. Improved intra angular prediction by DCT-based interpolation filter. In Proceedings of the 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012. [Google Scholar]
- Kim, M.; Lee, Y.-L. Discrete Sine Transform-Based Interpolation Filter for Video Compression. Symmetry 2017, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Seregin, V.; Karczewicz, M. Six tap intra interpolation filter, document JVET-D0119, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11. In Proceedings of the 4th JVET Meeting, Chengdu, China, 15–21 October 2016. [Google Scholar]
- Chang, Y.-J.; Chen, C.-C.; Chen, J.; Dong, J.; Egilmez, H.E.; Hu, N.; Haung, H.; Karczewicz, M.; Li, J.; Ray, B.; et al. Compression efficiency methods beyond VVC, document JVET-U0100, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29. In Proceedings of the 21st JVET Meeting, Online, 6–15 January 2021. [Google Scholar]
- Kim, J.; Kim, Y.-H. Adaptive Boundary Filtering Strategies in VVC Intra-Prediction for Depth Video Coding. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Gangwon, Korea, 1–3 November 2021. [Google Scholar]
- Henkel, A.; Zupancic, I.; Bross, B.; Winken, M.; Schwarz, H.; Marpe, D.; Wiegand, T. Alternative Half-Sample Interpolation Filters for Versatile Video Coding. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020. [Google Scholar]
- Kidani, Y.; Kawamura, K.; Unno, K.; Naito, S. Blocksize-QP Dependent Intra Interpolation Filters. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019. [Google Scholar]
- Chiang, C.-H.; Han, J.; Vitvitskyy, S.; Mukherjee, D.; Xu, Y. Adaptive interpolation filter scheme in AV1. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017. [Google Scholar]
- Pham, C.D.-K.; Zhou, J. Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding. IEEE Access 2019, 7, 112535–112543. [Google Scholar] [CrossRef]
- Yan, N.; Liu, D.; Li, H.; Li, B.; Li, L.; Wu, F. Invertibility-Driven Interpolation Filter for Video Coding. IEEE Trans. Image Process. 2019, 28, 4912–4925. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, J.; Sun, H.; Katto, J.; Jing, M. A Fast QTMT Partition Decision Strategy for VVC Intra Prediction. IEEE Access 2020, 8, 107900–107911. [Google Scholar] [CrossRef]
- Li, W.; Fan, C.; Ren, P. Fast Intra-Picture Partitioning for Versatile Video Coding. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25 October 2020. [Google Scholar]
- Saldanha, M.; Sanchez, G.; Marcon, C.; Agostini, L. Analysis of VVC Intra Prediction Block Partitioning Structure. In Proceedings of the 2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany, 5–8 December 2021. [Google Scholar]
- Bjøntegaard, G. Calculation of Average PSNR Differences Between RD-Curves, document VCEG-M33, ITU-T SG 16 Q 6 Video Coding Experts Group (VCEG). In Proceedings of the 13th VCEG Meeting, Austin, TX, USA, 2–4 April 2001. [Google Scholar]
- Bjøntegaard, G. Improvements of the BD-PSNR Model, document VCEG-AI11, ITU-T SG 16 Q 6 Video Coding Experts Group (VCEG). In Proceedings of the 35th VCEG Meeting, Berlin, Germany, 16–18 July 2008. [Google Scholar]
- Versatile Video Coding Test Model (VTM-14.2) Reference Software. Available online: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/tags/VTM-14.2 (accessed on 9 November 2021).
- Bossen, F.; Boyce, J.; Suehring, K.; Li, X.; Seregin, V. JVET common test conditions and software reference configurations for SDR video, document JVET-T2010, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29. In Proceedings of the 20th JVET Meeting, Online, 7–16 October 2020. [Google Scholar]
Index i | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0/32-pixel filter[i] | 0 | 64 | 0 | 0 |
1/32-pixel filter[i] | −1 | 63 | 2 | 0 |
2/32-pixel filter[i] | −2 | 62 | 4 | 0 |
3/32-pixel filter[i] | −2 | 60 | 7 | −1 |
4/32-pixel filter[i] | −2 | 58 | 10 | −2 |
5/32-pixel filter[i] | −3 | 57 | 12 | −2 |
6/32-pixel filter[i] | −4 | 56 | 14 | −2 |
7/32-pixel filter[i] | −4 | 55 | 15 | −2 |
8/32-pixel filter[i] | −4 | 54 | 16 | −2 |
9/32-pixel filter[i] | −5 | 53 | 18 | −2 |
10/32-pixel filter[i] | −6 | 52 | 20 | −2 |
11/32-pixel filter[i] | −6 | 49 | 24 | −3 |
12/32-pixel filter[i] | −6 | 46 | 28 | −4 |
13/32-pixel filter[i] | −5 | 44 | 29 | −4 |
14/32-pixel filter[i] | −4 | 42 | 30 | −4 |
15/32-pixel filter[i] | −4 | 39 | 33 | −4 |
16/32-pixel filter[i] | −4 | 36 | 36 | −4 |
Index i | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0/32-pixel filter[i] | 16 | 32 | 16 | 0 |
1/32-pixel filter[i] | 16 | 32 | 16 | 0 |
2/32-pixel filter[i] | 15 | 31 | 17 | 1 |
3/32-pixel filter[i] | 15 | 31 | 17 | 1 |
4/32-pixel filter[i] | 14 | 30 | 18 | 2 |
5/32-pixel filter[i] | 14 | 30 | 18 | 2 |
6/32-pixel filter[i] | 13 | 29 | 19 | 3 |
7/32-pixel filter[i] | 13 | 29 | 19 | 3 |
8/32-pixel filter[i] | 12 | 28 | 20 | 4 |
9/32-pixel filter[i] | 12 | 28 | 20 | 4 |
10/32-pixel filter[i] | 11 | 27 | 21 | 5 |
11/32-pixel filter[i] | 11 | 27 | 21 | 5 |
12/32-pixel filter[i] | 10 | 26 | 22 | 6 |
13/32-pixel filter[i] | 10 | 26 | 22 | 6 |
14/32-pixel filter[i] | 9 | 25 | 23 | 7 |
15/32-pixel filter[i] | 9 | 25 | 23 | 7 |
16/32-pixel filter[i] | 8 | 24 | 24 | 8 |
nTbS | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
intraHorVerDistThres[nTbS] | 24 | 14 | 2 | 0 | 0 |
Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0/32-pixel filter[i] | 0 | 0 | 0 | 128 | 0 | 0 | 0 | 0 |
1/32-pixel filter[i] | 0 | 1 | −3 | 127 | 4 | −2 | 1 | 0 |
2/32-pixel filter[i] | −1 | 3 | −7 | 127 | 8 | −4 | 2 | 0 |
3/32-pixel filter[i] | −1 | 4 | −10 | 126 | 13 | −6 | 3 | −1 |
4/32-pixel filter[i] | −1 | 5 | −12 | 124 | 17 | −7 | 3 | −1 |
5/32-pixel filter[i] | −2 | 6 | −15 | 122 | 23 | −9 | 4 | −1 |
6/32-pixel filter[i] | −2 | 7 | −17 | 120 | 28 | −11 | 5 | −2 |
7/32-pixel filter[i] | −2 | 8 | −19 | 117 | 33 | −13 | 6 | −2 |
8/32-pixel filter[i] | −3 | 9 | −21 | 114 | 38 | −14 | 7 | −2 |
9/32-pixel filter[i] | −3 | 9 | −22 | 111 | 43 | −16 | 8 | −2 |
10/32-pixel filter[i] | −3 | 10 | −23 | 107 | 49 | −18 | 8 | −2 |
11/32-pixel filter[i] | −3 | 10 | −24 | 104 | 54 | −19 | 9 | −3 |
12/32-pixel filter[i] | −3 | 11 | −24 | 99 | 59 | −20 | 9 | −3 |
13/32-pixel filter[i] | −3 | 11 | −25 | 95 | 65 | −22 | 10 | −3 |
14/32-pixel filter[i] | −3 | 11 | −25 | 90 | 70 | −22 | 10 | −3 |
15/32-pixel filter[i] | −3 | 11 | −24 | 85 | 75 | −23 | 10 | −3 |
16/32-pixel filter[i] | −3 | 11 | −24 | 80 | 80 | −24 | 11 | −3 |
Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0/32-pixel filter[i] | 4 | 24 | 60 | 80 | 60 | 24 | 4 | 0 |
1/32-pixel filter[i] | 4 | 24 | 60 | 80 | 60 | 24 | 4 | 0 |
2/32-pixel filter[i] | 4 | 23 | 58 | 79 | 61 | 26 | 5 | 0 |
3/32-pixel filter[i] | 4 | 23 | 58 | 79 | 61 | 26 | 5 | 0 |
4/32-pixel filter[i] | 3 | 21 | 58 | 78 | 62 | 28 | 6 | 0 |
5/32-pixel filter[i] | 3 | 21 | 58 | 78 | 62 | 28 | 6 | 0 |
6/32-pixel filter[i] | 3 | 20 | 53 | 76 | 64 | 31 | 8 | 1 |
7/32-pixel filter[i] | 3 | 20 | 53 | 76 | 64 | 31 | 8 | 1 |
8/32-pixel filter[i] | 3 | 19 | 51 | 75 | 65 | 33 | 9 | 1 |
9/32-pixel filter[i] | 3 | 19 | 51 | 75 | 65 | 33 | 9 | 1 |
10/32-pixel filter[i] | 3 | 18 | 49 | 74 | 66 | 35 | 10 | 1 |
11/32-pixel filter[i] | 3 | 18 | 49 | 74 | 66 | 35 | 10 | 1 |
12/32-pixel filter[i] | 3 | 17 | 47 | 73 | 67 | 37 | 11 | 1 |
13/32-pixel filter[i] | 3 | 17 | 47 | 73 | 67 | 37 | 11 | 1 |
14/32-pixel filter[i] | 2 | 15 | 44 | 71 | 69 | 40 | 13 | 2 |
15/32-pixel filter[i] | 2 | 15 | 44 | 71 | 69 | 40 | 13 | 2 |
16/32-pixel filter[i] | 2 | 14 | 42 | 70 | 70 | 42 | 14 | 2 |
nTbS | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Filter Selection Method | high_freq_ratio | VVC Method | VVC Method | high_freq_ratio | high_freq_ratio |
high_freq_ratio < THR | 4-tap SIF | - | - | 8-tap SIF | 8-tap SIF |
high_freq_ratio ≥ THR | 8-tap DCT-IF | - | - | 4-tap DCT-IF | 4-tap DCT-IF |
Class | Sequence Name | Picture Size | Picture Count | Picture Rate | Bit Depth |
---|---|---|---|---|---|
A1 | Tango2 | 3840 × 2160 | 294 | 60 | 10 |
FoodMarket4 | 3840 × 2160 | 300 | 60 | 10 | |
Campfire | 3840 × 2160 | 300 | 30 | 10 | |
A2 | CatRobot1 | 3840 × 2160 | 300 | 60 | 10 |
DaylightRoad2 | 3840 × 2160 | 300 | 60 | 10 | |
ParkRunning3 | 3840 × 2160 | 300 | 50 | 10 | |
B | MarketPlace | 1920 × 1080 | 600 | 60 | 10 |
RitualDance | 1920 × 1080 | 600 | 60 | 10 | |
Cactus | 1920 × 1080 | 500 | 50 | 8 | |
BasketballDrive | 1920 × 1080 | 500 | 50 | 8 | |
BQTerrace | 1920 × 1080 | 600 | 60 | 8 | |
C | RaceHorses | 832 × 480 | 300 | 30 | 8 |
BQMall | 832 × 480 | 600 | 60 | 8 | |
PartyScene | 832 × 480 | 500 | 50 | 8 | |
BasketballDrill | 832 × 480 | 500 | 50 | 8 | |
D | RaceHorses | 416 × 240 | 300 | 30 | 8 |
BQSquare | 416 × 240 | 600 | 60 | 8 | |
BlowingBubbles | 416 × 240 | 500 | 50 | 8 | |
BasketballPass | 416 × 240 | 500 | 50 | 8 |
nTbS | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Method A | 8-tap DCT-IF | 4-tap DCT-IF, 4-tap SIF | 4-tap DCT-IF, 4-tap SIF | 4-tap SIF | 4-tap SIF |
Method B | 4-tap DCT-IF | 4-tap DCT-IF, 4-tap SIF | 4-tap DCT-IF, 4-tap SIF | 8-tap SIF | 8-tap SIF |
Filter Selection Method | VVC Method | VVC Method | VVC Method | VVC Method | VVC Method |
Method C | 8-tap DCT-IF, 4-tap SIF | 4-tap DCT-IF, 4-tap SIF | 4-tap DCT-IF, 4-tap SIF | 4-tap SIF | 4-tap SIF |
Filter Selection Method | high_freq_ratio | VVC Method | VVC Method | VVC Method | VVC Method |
Method D | 4-tap DCT-IF | 4-tap DCT-IF, 4-tap SIF | 4-tap DCT-IF, 4-tap SIF | 8-tap SIF, 4-tap DCT-IF | 8-tap SIF, 4-tap DCT-IF |
Filter Selection Method | VVC Method | VVC Method | VVC Method | high_freq_ratio | high_freq_ratio |
Sequence | All Intra Main 10 | |||||
---|---|---|---|---|---|---|
Method A | Method B | |||||
Y | Cb | Cr | Y | Cb | Cr | |
Class A1 | 0.01% | −0.06% | 0.06% | −0.08% | −0.20% | −0.15% |
Class A2 | 0.02% | −0.03% | −0.02% | −0.01% | 0.00% | −0.04% |
Class B | −0.01% | 0.04% | −0.01% | −0.01% | 0.05% | −0.05% |
Class C | −0.33% | −0.22% | −0.27% | 0.00% | −0.02% | 0.07% |
Class D | −0.28% | −0.32% | −0.15% | −0.01% | −0.07% | 0.03% |
Overall | −0.13% | −0.12% | −0.08% | −0.02% | −0.03% | −0.02% |
Sequence | All Intra Main 10 | |||||
---|---|---|---|---|---|---|
Method C | Method D | |||||
Y | Cb | Cr | Y | Cb | Cr | |
Class A1 | 0.01% | −0.18% | 0.05% | −0.09% | −0.10% | −0.02% |
Class A2 | 0.02% | 0.08% | 0.00% | 0.00% | 0.04% | −0.04% |
Class B | 0.01% | 0.09% | 0.01% | 0.01% | 0.02% | 0.05% |
Class C | −0.40% | −0.22% | −0.36% | 0.01% | 0.03% | 0.02% |
Class D | −0.30% | −0.25% | −0.23% | −0.01% | −0.06% | 0.08% |
Overall | −0.14% | −0.09% | −0.11% | −0.01% | −0.01% | 0.03% |
All Intra Main 10 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | VVC Anchor | VVC Anchor with MRL and ISP | Adaptive Filter Method Based on high_freq_ratio (Proposed Method) | |||||||||||||
H | 4 | 8 | 16 | 32 | 64 | 4 | 8 | 16 | 32 | 64 | 4 | 8 | 16 | 32 | 64 | |
4 | 100.00 | 100.00 | 85.67 | 94.70 | — | 100.00 | 100.00 | 82.25 | 89.16 | — | 97.16 | 95.80 | 91.11 | 97.27 | — | |
8 | 100.00 | 87.89 | 81.99 | 25.68 | — | 100.00 | 91.35 | 81.42 | 44.36 | — | 96.77 | 91.36 | 86.69 | 53.43 | — | |
16 | 87.38 | 83.20 | 8.32 | 17.24 | — | 86.26 | 82.59 | 19.35 | 27.85 | 100.00 | 92.62 | 86.76 | 19.83 | 33.13 | 0.04 | |
32 | 94.01 | 19.98 | 14.73 | 0.00 | — | 90.45 | 36.35 | 23.17 | 10.59 | — | 97.06 | 42.55 | 27.34 | 0.07 | — | |
64 | — | — | — | — | 0.00 | — | — | 100.00 | — | 5.56 | — | — | 0.07 | — | 0.07 |
Adaptive Filter Method Based on high_freq_ratio (Proposed Method) | ||||||
---|---|---|---|---|---|---|
Class | Sequence Name | Y | Cb | Cr | EncT | DecT |
A1 | Tango2 | −0.11% | −0.36% | −0.09% | 102% | 103% |
FoodMarket4 | −0.11% | −0.06% | −0.22% | 102% | 106% | |
Campfire | 0.02% | 0.01% | 0.17% | 102% | 103% | |
A2 | CatRobot1 | −0.01% | 0.03% | 0.07% | 101% | 106% |
DaylightRoad2 | 0.03% | 0.34% | 0.13% | 103% | 105% | |
ParkRunning3 | −0.01% | −0.01% | 0.01% | 101% | 103% | |
B | MarketPlace | −0.01% | −0.02% | −0.13% | 102% | 108% |
RitualDance | −0.01% | 0.08% | 0.02% | 103% | 104% | |
Cactus | 0.00% | −0.02% | 0.27% | 102% | 105% | |
BasketballDrive | 0.03% | 0.04% | −0.05% | 102% | 108% | |
BQTerrace | 0.06% | 0.00% | 0.10% | 102% | 108% | |
C | BasketballDrill | −1.20% | −0.78% | −0.68% | 101% | 110% |
BQMall | −0.18% | −0.26% | −0.12% | 101% | 106% | |
PartyScene | −0.16% | −0.21% | −0.16% | 102% | 109% | |
RaceHorses | −0.08% | −0.04% | −0.20% | 103% | 103% | |
D | BasketballPass | −0.29% | −0.25% | −0.42% | 102% | 104% |
BQSquare | −0.55% | −0.62% | −0.21% | 101% | 105% | |
BlowingBubbles | −0.19% | −0.02% | −0.14% | 101% | 104% | |
RaceHorses | −0.23% | −0.26% | 0.03% | 101% | 103% | |
Class A1 | −0.07% | −0.14% | −0.05% | 102% | 104% | |
Class A2 | 0.00% | 0.12% | 0.07% | 102% | 105% | |
Class B | 0.02% | 0.01% | 0.04% | 102% | 107% | |
Class C | −0.41% | −0.32% | −0.29% | 101% | 107% | |
Class D | −0.31% | −0.29% | −0.18% | 101% | 104% | |
Overall | −0.16% | −0.13% | −0.09% | 102% | 105% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.-Y.; Choi, M.-K.; Lee, Y.-L. Frequency-Based Adaptive Interpolation Filter in Intra Prediction. Appl. Sci. 2023, 13, 1475. https://doi.org/10.3390/app13031475
Lim S-Y, Choi M-K, Lee Y-L. Frequency-Based Adaptive Interpolation Filter in Intra Prediction. Applied Sciences. 2023; 13(3):1475. https://doi.org/10.3390/app13031475
Chicago/Turabian StyleLim, Su-Yeon, Min-Kyeong Choi, and Yung-Lyul Lee. 2023. "Frequency-Based Adaptive Interpolation Filter in Intra Prediction" Applied Sciences 13, no. 3: 1475. https://doi.org/10.3390/app13031475
APA StyleLim, S.-Y., Choi, M.-K., & Lee, Y.-L. (2023). Frequency-Based Adaptive Interpolation Filter in Intra Prediction. Applied Sciences, 13(3), 1475. https://doi.org/10.3390/app13031475