The Interaction of Methyl Formate with Proton-Bound Solvent Clusters in the Gas Phase and the Unimolecular Chemistry of the Reaction Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Tandem Mass Spectrometry
2.2. Computational Methods
3. Results
3.1. Solvent Cluster Ion/Methyl Formate Reactions
3.2. Unimolecular Reactions of Proton-Bound Solvent-MF Clusters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rivett, A.C.; Martin, D.; Gray, D.J.; Price, C.S.; Nickless, G.; Simmonds, P.G.; O’Doherty, S.J.; Greally, B.R.; Knights, A.; Shallcross, D.E. The role of volatile organic compounds in the polluted urban atmosphere of Bristol, UK. Atmos. Chem. Phys. Disc. 2003, 3, 769–796. [Google Scholar]
- Xiong, Y.; Bari, M.A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef] [PubMed]
- Wallington, T.J.; Hurley, M.D.; Maurer, T.; Barnes, I.; Becker, K.H.; Tyndall, G.S.; Orlando, J.J.; Pimentel, A.S.; Bilde, M. Atmospheric Oxidation Mechanism of Methyl Formate. J. Phys. Chem. A 2001, 105, 5146–5154. [Google Scholar] [CrossRef]
- Sinha, A.; Thomson, M.J. The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures. Combust. Flame 2004, 136, 548–556. [Google Scholar] [CrossRef]
- Daly, C.A.; Simmie, J.M.; Dagaut, P.; Cathonnet, M. Oxidation of dimethoxymethane in a jet-stirred reactor. Combust. Flame 2001, 125, 1106–1117. [Google Scholar] [CrossRef]
- Liu, I.; Cant, N.W.; Bromly, J.H.; Barnes, F.J.; Nelson, P.F.; Haynes, B.S. Formate species in the low-temperature oxidation of dimethyl ether. Chemosphere 2001, 42, 583–589. [Google Scholar] [CrossRef]
- Bertin, M.; Romanzin, C.; Michaut, X.; Jeseck, P.; Fillion, J.H. Adsorption of Organic Isomers on Water Ice Surfaces: A Study of Acetic Acid and Methyl Formate. J. Phys. Chem. C 2011, 115, 12920–12928. [Google Scholar] [CrossRef]
- Goken, E.G.; Castleman, A.W., Jr. Reactions of formic acid with protonated water clusters: Implications of cluster growth in the atmosphere. J. Geophys. Res. 2010, 115, D16203. [Google Scholar] [CrossRef]
- Zheng, Z.; Pavlov, J.; Attygalle, A.B. Fortuitous Ion–Molecule Reaction Enables Enumeration of Metal–Hydrogen Bonds Present in Gaseous Ions. ACS Omega 2019, 4, 3965–3972. [Google Scholar] [CrossRef]
- Osburn, S.; Ryzhov, V. Ion–Molecule Reactions: Analytical and Structural Tool. Anal. Chem. 2013, 85, 769–778. [Google Scholar] [CrossRef]
- Vaida, V. Perspective: Water cluster mediated atmospheric chemistry. J. Chem. Phys. 2011, 135, 020901. [Google Scholar] [CrossRef]
- Španěl, P.; Pavlik, M.; Smith, D. Reactions of H3O+ and OH− ions with some organic molecules; applications to trace gas analysis in air. Int. J. Mass Spectrom. Ion Proc. 1995, 145, 177–186. [Google Scholar] [CrossRef]
- Adams, N.G.; Smith, D. The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 349–359. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef]
- Curtis, S.; DiMuzio, J.; Mungham, A.; Roy, J.; Hassan, D.; Renaud, J.; Mayer, P.M. Reactions of Atomic Metal Anions in the Gas phase: Competition between Electron Transfer, Proton Abstraction and Bond Activation. J. Phys. Chem. A 2011, 115, 14006–14012. [Google Scholar] [CrossRef] [PubMed]
- Cooks, R.G. Collision Spectroscopy; Springer: New York, NY, USA, 1977. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Baer, T.; Mayer, P.M. Statistical RRKM/QET Calculations in mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 103–115. [Google Scholar]
- Baer, T.; Hase, W.L. Unimolecular Reaction Dynamics, Theory and Experiments; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Beyer, T.; Swinehart, D.R. Number of Multiply-Restricted Partitions [A1] (Algorithm 448). ACM Commun. 1973, 16, 379. [Google Scholar] [CrossRef]
- Mayer, P.M.; Martineau, E. Gas-phase binding energies for non-covalent A[β]-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory. Phys. Chem. Chem. Phys. 2011, 13, 5178–5186. [Google Scholar] [CrossRef]
- Renaud, J.B.; Martineau, E.; Mironov, G.G.; Berezovski, M.V.; Mayer, P.M. The collaborative role of molecular conformation and energetics in the binding of gas-phase non-covalent polymer/amine complexes. Phys. Chem. Chem. Phys. 2012, 14, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Diedhiou, M.; Mayer, P.M. Fate of Protonated Formates in the Gas Phase. J. Phys. Chem. A 2021, 125, 5096–5102. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. [Google Scholar] [CrossRef]
Reaction | RRKM E0 | Theoretical E0 |
---|---|---|
MF(W)H+ → MFH+ + W | 0.34 | 0.94 |
MF(M)H+ → MFH+ + M → M(CO2)H+ + CH4 MF(E)H+ → MFH+ + E → EH+ + MF MF(M)2H+ → MF(M)H+ + M → (M)2H+ + MF MF(E)2H+ → MF(E)H+ + E → (E)2H+ + MF MF(E)3H+ → MF(E)2H+ + E | 0.58 0.90 0.53 0.56 0.77 0.85 0.87 0.88 0.64 | 1.25 1.98 1.21 1.49 0.84 1.06 0.89 0.94 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diedhiou, M.; Mayer, P.M. The Interaction of Methyl Formate with Proton-Bound Solvent Clusters in the Gas Phase and the Unimolecular Chemistry of the Reaction Products. Appl. Sci. 2023, 13, 1339. https://doi.org/10.3390/app13031339
Diedhiou M, Mayer PM. The Interaction of Methyl Formate with Proton-Bound Solvent Clusters in the Gas Phase and the Unimolecular Chemistry of the Reaction Products. Applied Sciences. 2023; 13(3):1339. https://doi.org/10.3390/app13031339
Chicago/Turabian StyleDiedhiou, Malick, and Paul M. Mayer. 2023. "The Interaction of Methyl Formate with Proton-Bound Solvent Clusters in the Gas Phase and the Unimolecular Chemistry of the Reaction Products" Applied Sciences 13, no. 3: 1339. https://doi.org/10.3390/app13031339
APA StyleDiedhiou, M., & Mayer, P. M. (2023). The Interaction of Methyl Formate with Proton-Bound Solvent Clusters in the Gas Phase and the Unimolecular Chemistry of the Reaction Products. Applied Sciences, 13(3), 1339. https://doi.org/10.3390/app13031339