Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps
Abstract
:1. Introduction
2. Simulation Setup
2.1. Isolated Airfoil
2.1.1. Isolated Airfoil Model and the Boundary Conditions
2.1.2. Mesh Topology
2.1.3. Numerical Solver and Simulation Validation
2.2. The Vertical-Axis Wind Turbine
2.2.1. Geometric Model of VAWT
2.2.2. Computational Domain and Mesh Distribution
2.2.3. Numerical Solver and Simulation Validation
3. Results and Discussion
3.1. Effect of GFs on an NACA0021 Isolated Aerofoil
3.1.1. Aerodynamic Forces and Separation Control
3.1.2. Trailing Edge Flow Structure
3.2. Effect of GFs on H-VAWT
3.2.1. Power and Moment Coefficient
3.2.2. Tangential Force and Normal Force for Rotor Blade
3.2.3. Rotor Output Power Contribution
3.2.4. Flow Control Characteristics of the Modified VAWT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Turbine swept area | n | Number of blades |
c | Chord length | P | Power output |
Cd | Drag coefficient | R | Turbine radius |
Cf | Skin friction coefficient | S | Projected area of the airfoil |
Cl | Lift coefficient | T | Torque |
Cm | Moment coefficient | U∞ | Freestream velocity |
CoP | Pressure coefficient | W | Flap thickness |
Cp | Power coefficient | α | Angle of attack (AOA) |
D | Turbine diameter | θ | Flap serration angle |
FD | Drag | λ | Tip speed ratio (TSR) |
FL | Lift | σ | Solidity |
FN | Normal force | ω | Rotating angular velocity |
FT | Tangential force | ρ | Air density |
H | Flap height | τw | Wall shear stress |
L | Flap length | ψ | Azimuth angle |
References
- Hansen, J.T.; Mahak, M.; Tzanakis, I. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach. Renew. Energy 2021, 171, 1371–1381. [Google Scholar] [CrossRef]
- Rolin, V.F.C.; Porté-Agel, F. Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow. Renew. Energy 2018, 118, 1–13. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Kagemoto, H.; Sao, K.; Mizuno, A. Concept design and dynamic analyses of a floating vertical-axis wind turbine: Case study of power supply to offshore Greek islands. J. Ocean Eng. Mar. Energy 2015, 2, 85–104. [Google Scholar] [CrossRef]
- Timmer, W.A. Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018. Wind. Eng. 2008, 32, 525–537. [Google Scholar] [CrossRef]
- Islam, M.; Fartaj, A.; Carriveau, R. Design analysis of a smaller-capacity straight-bladed VAWT with an asymmetric airfoil. Int. J. Sustain. Energy 2011, 30, 179–192. [Google Scholar] [CrossRef]
- Li, Y.C.; Wang, J.J.; Tan, G.K.; Zhang, P.F. Effects of Gurney flaps on the lift enhancement of a cropped nonslender delta wing. Exp. Fluids 2002, 32, 99–105. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Xie, Y.; Lv, K.; Sheng, R. Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil. Energy 2021, 225, 120206. [Google Scholar] [CrossRef]
- Liebeck, R.H. Design of Subsonic Airfoils for High Lift. J. Aircr. 1978, 15, 547–561. [Google Scholar] [CrossRef]
- Wilbur, M.L.; Mistry, M.P.; Lorber, P.F.; Blackwell Jr, R.; Barbarino, S.; Lawrence, T.H.; Arnold, U.T. Rotary Wings Morphing Technologies: State of the Art and Perspectives. Morphing Wing Technol. 2018, 759–797. [Google Scholar]
- Xie, Y.H.; Jiang, W.; Lu, K.; Zhang, D. Numerical investigation into energy extraction of flapping airfoil with Gurney flaps. Energy 2016, 109, 694–702. [Google Scholar] [CrossRef]
- Gopalakrishnan Meena, M.; Taira, K.; Asai, K. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number. AIAA J. 2017, 56, 1348–1359. [Google Scholar] [CrossRef]
- Ni, L.; Miao, W.; Li, C.; Liu, Q. Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations. Energy 2021, 215, 118915. [Google Scholar] [CrossRef]
- Yan, Y.; Avital, E.; Williams, J.; Cui, J. Performance Improvements for a Vertical Axis Wind Turbine by Means of Gurney Flap. J. Fluids Eng. 2020, 142, 021205. [Google Scholar] [CrossRef]
- Zhu, H.; Hao, W.; Li, C.; Ding, Q. Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap. J. Wind Eng. Ind. Aerodyn. 2019, 186, 17–31. [Google Scholar] [CrossRef]
- Zhang, P.F.; Liu, A.B.; Wang, J.J. Aerodynamic Modification of NACA 0012 Airfoil by Trailing-Edge Plasma Gurney Flap. AIAA J. 2009, 47, 2467–2474. [Google Scholar] [CrossRef]
- Feng, L.H.; Jukes, T.N.; Choi, K.S.; Wang, J.J. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Exp. Fluids 2012, 52, 1533–1546. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Zhang, W.; Guo, X.; Yuan, Q. Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil. J. Mech. Sci. Technol. 2017, 31, 1645–1655. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Dai, R. Numerical prediction of switching gurney flap effects on straight bladed VAWT power performance. J. Mech. Sci. Technol. 2020, 34, 4933–4940. [Google Scholar] [CrossRef]
- Ismail, M.F.; Vijayaraghavan, K. The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 2015, 80, 20–31. [Google Scholar] [CrossRef]
- Ye, X.; Hu, J.; Zheng, N.; Li, C. Numerical study on aerodynamic performance and noise of wind turbine airfoils with serrated gurney flap. Energy 2023, 262, 125574. [Google Scholar] [CrossRef]
- Meyer, R.; Hage, W.; Bechert, D.W.; Schatz, M.; Thiele, F. Drag Reduction on Gurney Flaps by Three-Dimensional Modifications. J. Aircr. 2006, 43, 132–140. [Google Scholar] [CrossRef]
- Lee, T. Aerodynamic Characteristics of Airfoil with Perforated Gurney-Type Flaps. J. Aircr. 2009, 46, 542–548. [Google Scholar] [CrossRef]
- Oerlemans, S.; Fisher, M.; Maeder, T.; Kögler, K. Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Edge Serrations. AIAA J. 2009, 47, 1470–1481. [Google Scholar] [CrossRef]
- Neuhart, D.H. A Water Tunnel Study of Gurney Flaps; National Aeronautics and Space Administration, Scientific and Technical Information Division, Langley Research Center: Hampton, VA, USA, 1988.
- van Dam, C.P.; Yen, D.T.; Vijgen, P.M.H.W. Gurney Flap Experiments on Airfoil and Wings. J. Aircr. 1999, 36, 484–486. [Google Scholar] [CrossRef]
- Gai, S.L.; Palfrey, R. Influence of Trailing-Edge Flow Control on Airfoil Performance. J. Aircr. 2003, 40, 332–337. [Google Scholar] [CrossRef]
- Traub, L.W.; Chandrashekar, S.M. Experimental study on the effects of wing sweep on Gurney flap performance. Aerosp. Sci. Technol. 2016, 55, 57–63. [Google Scholar] [CrossRef]
- Jain, S.; Sitaram, N.; Krishnaswamy, S. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics. Int. Sch. Res. Not. 2015, 2015, 402358. [Google Scholar] [CrossRef]
- Garry, K.; Couthier, G. An Investigation of the Effectiveness of Plain and Serrated Gurney Flaps. In Proceedings of the 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Wang, J.; Li, Y.; Zhang, P. Influences of Mounting Angles and Locations on the Effects of Gurney Flaps. J. Aircr. 2003, 40, 494–498. [Google Scholar]
- Kinzel, M.P.; Maughmer, M.D.; Duque, E.P.N. Numerical Investigation on the Aerodynamics of Oscillating Airfoils with Deployable Gurney Flaps. AIAA J. 2010, 48, 1457–1469. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Kalkman, I.; Blocken, B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 2017, 197, 132–150. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Ming, Z.; Zhang, M.; Xu, J. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances. Eng. Appl. Comput. Fluid Mech. 2017, 11, 193–209. [Google Scholar]
- Benim, A.C.; Diederich, M.; Gül, F.; Oclon, P.; Taler, J. Computational and experimental investigation of the aerodynamics and aeroacoustics of a small wind turbine with quasi-3D optimization. Energy Convers. Manag. 2018, 177, 143–149. [Google Scholar] [CrossRef]
- Lei, H.; Zhou, D.; Bao, Y.; Chen, C.; Ma, N.; Han, Z. Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion. Energy 2017, 127, 1–17. [Google Scholar] [CrossRef]
- Lei, H.; Zhou, D.; Bao, Y.; Li, Y.; Han, Z. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine. Energy Convers. Manag. 2017, 133, 235–248. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Jacobs, E.N.; Sherman, A. Airfoil section characteristics as affected by variations of the Reynolds number. NACA Tech. Rep. 1937, 586, 227–267. [Google Scholar]
- Hassan, G.E.; Hassan, A.; Youssef, M.E. Numerical investigation of medium range re number aerodynamics characteristics for NACA0018 airfoil. CFD Lett. 2014, 6, 175–187. [Google Scholar]
- Rezaeiha, A.; Kalkman, I.; Blocken, B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renew. Energy 2017, 107, 373–385. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bianchini, A.; Maleci, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 2016, 85, 419–435. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Convers. Manag. 2018, 169, 45–77. [Google Scholar] [CrossRef]
- Raciti Castelli, M.; Englaro, A.; Benini, E. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 2011, 36, 4919–4934. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, S.; Li, G.; Huang, D.; Zheng, Z. Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renew. Energy 2018, 126, 801–818. [Google Scholar] [CrossRef]
- Liu, Q.; Miao, W.; Ye, Q.; Li, C. Performance assessment of an innovative Gurney flap for straightbladed vertical axis wind turbine. Renew. Energy 2022, 185, 1124–1138. [Google Scholar] [CrossRef]
- Jang, C.S.; Ross, J.C.; Cummings, R.M. Numerical investigation of an airfoil with a Gurney flap. Aircr. Des. 1998, 1, 75–88. [Google Scholar] [CrossRef]
Total Cells (×105) | y+ | Cl | Deviation-Cl (%) | Cd | Deviation-Cd (%) | |
---|---|---|---|---|---|---|
coarse | 8 | 1.2 | 0.66 | −2.3 | 0.032 | 2.6 |
medium | 14 | 0.98 | 0.692 | −0.2 | 0.0311 | −0.3 |
fine | 20 | 0.77 | 0.693 | - | 0.0312 | - |
Parameter | Value |
---|---|
Number of blades, n [-] | 3 |
Airfoil [-] | NACA0021 |
Blade chord, c [m] | 0.086 |
Diameter, D [m] | 1.03 |
Solidity, σ [-] | 0.25 |
Tip speed ratio, λ [-] | 1.62 ≤ λ ≤ 3.3 |
Flow speed, U∞ [m/s] | 9 |
Mesh Set | Number of Cells | Cp | Relative Change in Cp concerning the Fine Mesh |
---|---|---|---|
coarse | 2,156,466 | 0.388 | −2.5% |
medium | 5,181,680 | 0.399 | 0.25% |
fine | 6,995,051 | 0.398 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yang, P.; Zhang, B.; Chen, L. Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps. Appl. Sci. 2023, 13, 12643. https://doi.org/10.3390/app132312643
Chen L, Yang P, Zhang B, Chen L. Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps. Applied Sciences. 2023; 13(23):12643. https://doi.org/10.3390/app132312643
Chicago/Turabian StyleChen, Liu, Pei Yang, Bingxia Zhang, and Lingjie Chen. 2023. "Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps" Applied Sciences 13, no. 23: 12643. https://doi.org/10.3390/app132312643
APA StyleChen, L., Yang, P., Zhang, B., & Chen, L. (2023). Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps. Applied Sciences, 13(23), 12643. https://doi.org/10.3390/app132312643