Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems
Abstract
:1. Introduction
2. Classical Topologies
2.1. Fundamental Concepts
2.2. Design for the Different Topologies
2.3. Bifurcation Phenomenon
2.4. Coupling Factor
2.5. Input Impedance Behavior
3. Differential Evolution-Based Parameter Selection
Algorithm 1 Differential Evolution algorithm. |
|
4. System Overview
5. Simulation Results and Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.; Jeong, D.; Kim, J.; Kim, H.; Kim, J.; Park, S.M.; Ahn, S. Design and Implementation of a Wireless Charging-Based Cardiac Monitoring System Focused on Temperature Reduction and Robust Power Transfer Efficiency. Energies 2020, 13, 1008. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Implantable Devices: Issues and Challenges. Electronics 2013, 2, 1–34. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Y.; Cui, Y.; Huang, S.; Deng, D. A wireless power transmission system with load regulation for implantable devices. IEEE Instrum. Meas. Mag. 2020, 23, 68–76. [Google Scholar] [CrossRef]
- Agarwal, K.; Jegadeesan, R.; Guo, Y.X.; Thakor, N.V. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev. Biomed. Eng. 2017, 10, 136–161. [Google Scholar] [CrossRef] [PubMed]
- Büyük, M.; Savrun, M.M.; İnci, M. Analysis and modeling of wireless power transfer supported by quadratic boost converter interfaced fuel cell power source. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2997. [Google Scholar] [CrossRef]
- Khan, S.R.; Pavuluri, S.K.; Cummins, G.; Desmulliez, M.P.Y. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review. Sensors 2020, 20, 3487. [Google Scholar] [CrossRef]
- Lin, D.B.; Lin, C.K.; Wang, C.Y.; Cheng, Y.L. Design and Analysis of Dual-Band Resonance Inductive Coupling for Wireless Power Transfer and Near-Field Wireless Communication Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 1925–1934. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Huang, Y. Wireless Power Transfer for Implanted Medical Application: A Review. Energies 2020, 13, 2837. [Google Scholar] [CrossRef]
- Wang, C.S.; Covic, G.; Stielau, O. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 2004, 51, 148–157. [Google Scholar] [CrossRef]
- Vu, V.B.; Tran, D.H.; Choi, W. Implementation of the Constant Current and Constant Voltage Charge of Inductive Power Transfer Systems With the Double-Sided LCC Compensation Topology for Electric Vehicle Battery Charge Applications. IEEE Trans. Power Electron. 2018, 33, 7398–7410. [Google Scholar] [CrossRef]
- Meng, X.; Qiu, D.; Zhang, B.; Xiao, W. Output Voltage Stabilization Control without Secondary Side Measurement for Implantable Wireless Power Transfer System. In Proceedings of the 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), Montreal, QC, Canada, 3–7 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, S.C.; Tse, C.K.; Chen, Q. Design for Efficiency Optimization and Voltage Controllability of Series—Series Compensated Inductive Power Transfer Systems. IEEE Trans. Power Electron. 2014, 29, 191–200. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Agushaka, J.O.; Abualigah, L.; Mirjalili, S.; Gandomi, A.H. Prairie Dog Optimization Algorithm. Neural Comput. Appl. 2022, 34, 20017–20065. [Google Scholar] [CrossRef]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S. A Many-Objective Marine Predators Algorithm for Solving Many-Objective Optimal Power Flow Problem. Appl. Sci. 2022, 12, 11829. [Google Scholar] [CrossRef]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S. Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm. Sustainability 2021, 13, 7448. [Google Scholar] [CrossRef]
- Gati, E.; Kokosis, S.; Patsourakis, N.; Manias, S. Comparison of Series Compensation Topologies for Inductive Chargers of Biomedical Implantable Devices. Electronics 2020, 9, 8. [Google Scholar] [CrossRef]
- Dai, W.; Tang, W.; Cai, C.; Deng, L.; Zhang, X. Wireless Power Charger Based on Class E Amplifier with the Maximum Power Point Load Consideration. Energies 2018, 11, 2378. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, G.B.; Wu, C.C.; Chang, E.Y.; Cheng, S.; Chieng, W.H. Derivation of the Resonance Mechanism for Wireless Power Transfer Using Class-E Amplifier. Energies 2021, 14, 632. [Google Scholar] [CrossRef]
- Jiang, C.; Chau, K.T.; Liu, C.; Lee, C.H.T. An Overview of Resonant Circuits for Wireless Power Transfer. Energies 2017, 10, 894. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Palandrani, F.; De Santis, V.; Hirata, A.; Feliziani, M. Wireless Power Transfer Charging System for AIMDs and Pacemakers. IEEE Trans. Microw. Theory Tech. 2016, 64, 633–642. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Oh, H.; Lee, W.; Koo, H.; Bae, J.; Hwang, K.C.; Lee, K.Y.; Yang, Y. 6.78 MHz Wireless Power Transmitter Based on a Reconfigurable Class–E Power Amplifier for Multiple Device Charging. IEEE Trans. Power Electron. 2020, 35, 5907–5917. [Google Scholar] [CrossRef]
- Liu, S.; Liu, M.; Yang, S.; Ma, C.; Zhu, X. A Novel Design Methodology for High-Efficiency Current-Mode and Voltage-Mode Class-E Power Amplifiers in Wireless Power Transfer systems. IEEE Trans. Power Electron. 2017, 32, 4514–4523. [Google Scholar] [CrossRef]
- R., N.; A., V.J.; Chokkalingam, B.; Padmanaban, S.; Leonowicz, Z.M. Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants. Energies 2017, 10, 1409. [Google Scholar] [CrossRef]
- Wen, F.; Li, R. Parameter Analysis and Optimization of Class-E Power Amplifier Used in Wireless Power Transfer System. Energies 2019, 12, 3240. [Google Scholar] [CrossRef]
- Liu, X.; Pan, T.; Zhong, G. Design of three-phase class E power amplifier based on wireless power transmission system. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 2573–2577. [Google Scholar] [CrossRef]
- Thanh Le, H.; Nour, Y.; Han, A.; Jensen, F.; Ouyang, Z.; Knott, A. Microfabricated Air-Core Toroidal Inductor in Very High-Frequency Power Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 604–613. [Google Scholar] [CrossRef]
- Ahmed, D.; Wang, L.; Wu, M.; Mao, L.; Wang, X. Two-Dimensional Winding Loss Analytical Model for High-Frequency Multilayer Air-Core Planar Inductor. IEEE Trans. Ind. Electron. 2022, 69, 6794–6804. [Google Scholar] [CrossRef]
- Gao, Y.; Sankaranarayanan, V.; Dede, E.M.; Zhou, Y.; Zhou, F.; Erickson, R.W.; Maksimović, D. Modeling and Design of High-Power, High-Current-Ripple Planar Inductors. IEEE Trans. Power Electron. 2022, 37, 5816–5832. [Google Scholar] [CrossRef]
C1 | Z1 | ||
---|---|---|---|
SS | |||
SP | |||
PS | |||
PP |
SS | SP | PS | PP | |
---|---|---|---|---|
610.0 nH | 40.0 nH | 610.0 nH | 40.0 nH | |
0.3381 | 0.0222 | 0.3381 | 0.0222 | |
610.0 nH | 40.0 nH | 610.0 nH | 40.0 nH | |
0.3381 | 0.0222 | 0.3381 | 0.0222 | |
225.8 pF | 3.6736 nF | 212.5 pF | 3.4517 nF | |
225.8 pF | 3.4440 nF | 225.8 pF | 3.4440 nF | |
152.5 nH | 10.0 nH | 152.5 nH | 10.0 nH | |
94.9% | 94.8% | 94.9% | 94.8% |
Topology | Condition |
---|---|
SS | |
SP and PP | |
PS |
SS | SP | PS | PP | |
---|---|---|---|---|
610.0 nH | 40.0 nH | 610.0 nH | 40.0 nH | |
0.3381 | 0.0222 | 0.3381 | 0.0222 | |
300.0 nH | 70.0 nH | 430.0 nH | 57.0 nH | |
0.1663 | 0.0388 | 0.2385 | 0.0316 | |
225.8 pF | 3.6736 nF | 219.0 pF | 3.5609 nF | |
459.2 pF | 1.9680 nF | 320.2 pF | 2.4168 nF | |
107.0 nH | 13.2 nH | 128.1 nH | 11.9 nH | |
94.0% | 93.8% | 94.7% | 93.6% |
Description | Value |
---|---|
DC supply voltage () | 12.0 V |
RE choke () | 1.0 mH |
Choke resistance () | 0.5 |
Shunt capacitance () | 25.9 pF |
Series inductance () | 12.44 H |
Series resistance () | 6.8967 |
Series capacitance () | 14.13 pF |
Match capacitance () | 63.3 pF |
Primary capacitance () | 219 pF |
Primary coil resistance () | 0.3381 |
Primary coil inductance () | 610.0 nH |
Secondary capacitance () | 320.2 pF |
Secondary coil resistance () | 0.2328 |
Secondary coil inductance () | 430.2 nH |
Capacitors’ ESR | 0.050 |
Switch RDS () | 0.025 |
Load resistance () | 12.96 |
Mutual inductance () | 128.1 nH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus, I.M.S.; Tolfo, T.M.; Godoy, R.B.; Pelzl, M.d.C.; Acosta, B.d.S.; Soares, R.L.R. Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems. Appl. Sci. 2023, 13, 12429. https://doi.org/10.3390/app132212429
de Jesus IMS, Tolfo TM, Godoy RB, Pelzl MdC, Acosta BdS, Soares RLR. Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems. Applied Sciences. 2023; 13(22):12429. https://doi.org/10.3390/app132212429
Chicago/Turabian Stylede Jesus, Ianca M. S., Thaís M. Tolfo, Ruben B. Godoy, Matheus de C. Pelzl, Beatriz de S. Acosta, and Rafael L. R. Soares. 2023. "Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems" Applied Sciences 13, no. 22: 12429. https://doi.org/10.3390/app132212429
APA Stylede Jesus, I. M. S., Tolfo, T. M., Godoy, R. B., Pelzl, M. d. C., Acosta, B. d. S., & Soares, R. L. R. (2023). Differential-Evolution-Assisted Optimization of Classical Compensation Topologies for 1 W Current-Fed IMD Wireless Charging Systems. Applied Sciences, 13(22), 12429. https://doi.org/10.3390/app132212429