An Improved SIFT Underwater Image Stitching Method
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Underwater Image Pre-Processing
3.2. Underwater Image Stitching
3.2.1. The Traditional SIFT Method
3.2.2. The Proposed Improved SIFT Method
Algorithm 1: SIFT-based coarse matching stage. |
Input: |
Output: |
← matchKeyPointsKNN |
← getHomography |
, _ ← shape () |
←-1, -1, 0]]) |
← origin. reshape (-1,1,2) |
← perspectiveTransform , ). squeeze () |
if) < 0 then |
if[: ,1]) then |
←[: ,0]) |
[: ,1] ←[: ,1]) |
else |
←[: ,1]) |
[: ,0] ←[: ,0]) |
end if |
else |
[: ,0] ←[: ,0]) |
[: ,1] ←[: ,1]) |
end if |
← warpPerspective |
4. Results
4.1. Qualitative Comparisons
4.2. Quantitative Comparisons
4.2.1. Comparison with the Traditional SIFT Algorithm
4.2.2. Comparisons with Image Stitching Algorithms
4.3. Stitching of Multiple Images
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jatmiko, D.A.; Prini, S.U. Study and Performance Evaluation Binary Robust Invariant Scalable Keypoints (BRISK) for Underwater Image Stitching. IOP Conf. Ser. Mater. Sci. Eng. 2020, 879, 012111. [Google Scholar] [CrossRef]
- Faugeras, O.; Luong, Q. The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Kim, D.; Song, J. Underwater Image Preprocessing and Compression for Efficient Underwater Searches and Ultrasonic Communications. Int. J. Precis. Eng. Manuf. 2007, 8, 38–45. [Google Scholar]
- Pandey, A.; Pati, U.C. Image mosaicing: A deeper insight. Image Vis. Comput. 2019, 89, 236–257. [Google Scholar] [CrossRef]
- Szeliski, R. Image mosaicing for tele-reality applications. In Proceedings of the 1994 IEEE Workshop on Applications of Computer Vision, Sarasota, FL, USA, 5–7 December 1994; IEEE: New York, NY, USA, 1994. [Google Scholar]
- Negahdaripour, S.; Lanjing, J. Direct recovery of motion and range from images of scenes with time-varying illumination. In Proceedings of the International Symposium on Computer Vision-ISCV, Coral Gables, FL, USA, 21–23 November 1995; IEEE: New York, NY, USA, 1995. [Google Scholar]
- Marks, R.L.; Rock, S.M.; Lee, M.J. Real-time video mosaicking of the ocean floor. IEEE J. Ocean. Eng. 1995, 20, 229–241. [Google Scholar] [CrossRef]
- Raut, S.; Pati, U.C. Underwater image registrtion with improved SIFT algorithm. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaas, T.; Van Goal, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Zaragoza, J.; Cesar, H. As-projective-as-possible image stitching with moving DLT. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Chang, C.; Sato, Y.; Chuang, Y. Shape-preserving half-projective warps for image stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Lin, C.C.; Pankanti, S.U.; Natesan Ramamurthy, K.; Aravkin, A.Y. Adaptive as-natural-as-possible image stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Gao, J.; Li, Y.; Chin, T.J.; Brown, M.S. Seam-driven image stitching. In Eurographics (Short Papers); The Eurographics Association: Eindhoven, The Netherlands, 2013. [Google Scholar]
- Lin, K.; Jiang, N.; Cheong, L.F.; Do, M.; Lu, J. Seagull: Seam-guided local alignment for parallax-tolerant image stitching. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef]
- Lin, W.; Liu, S.; Matsushita, Y.; Ng, T.T.; Cheong, L.F. Smoothly varying affine stitching. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Gao, J.; Kim, S.J.; Brown, M.S. Constructing image panoramas using dual-homography warping. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Zhang, F.; Liu, F. Parallax-tolerant image stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Li, J.; Wang, Z.; Lai, S.; Zhai, Y.; Zhang, M. Parallax-tolerant image stitching based on robust elastic warping. IEEE Trans. Multimed. 2017, 20, 1672–1687. [Google Scholar] [CrossRef]
- Leone, A.; Distante, C.; Mastrolia, A.; Indiveri, G. A fully automated approach for underwater mosaicking. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; IEEE: New York, NY, USA, 2006. [Google Scholar]
- Haywood, R. Acquisition of a micro scale photographic survey using an autonomous submersible. In Oceans; IEEE: New York, NY, USA, 1986; pp. 1423–1426. [Google Scholar]
- Xu, X.; Negahdaripour, S. Vision-based motion sensing for underwater navigation and mosaicing of ocean floor images. In Proceedings of the Oceans’97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada, 6–9 October 1997; IEEE: New York, NY, USA, 1997. [Google Scholar]
- Fleischer, S.D.; Wang, H.H.; Rock, S.M.; Lee, M.J. Video mosaicking along arbitrary vehicle paths. In Proceedings of the Symposium on Autonomous Underwater Vehicle Technology, Monterey, CA, USA, 2–6 June 1996; IEEE: New York, NY, USA, 1996. [Google Scholar]
- Fleischer, S.D.; Marks, R.L.; Rock, S.M.; Lee, M.J. Improved real-time videomosaicking of the ocean floor. In Proceedings of the ‘Challenges of Our Changing Global Environment’. Conference Proceedings. OCEANS’95 MTS/IEEE, San Diego, CA, USA, 16 June 1995; IEEE: New York, NY, USA, 1995. [Google Scholar]
- Gracias, N.; Santos-Victor, J. Underwater mosaicing and trajectory reconstruction using global alignment. In MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), Honolulu, HI, USA 5–8 November 2001; IEEE: New York, NY, USA, 2001. [Google Scholar]
- Pizarro, O.; Singh, H. Toward large-area mosaicing for underwater scientific applications. IEEE J. Ocean. Eng. 2003, 28, 651–672. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. Graph. Gems 1994, 474–485. [Google Scholar] [CrossRef]
- Stark, J.A. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 2000, 9, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Chen, H.; Fuh, C. A novel automatic white balance method for digital still cameras. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan, 23–26 May 2005; IEEE: New York, NY, USA, 2005. [Google Scholar]
- Kashif, I.; Salam, R.A.; Osman, A.; Talib, A.Z. Underwater Image Enhancement Using an Integrated Colour Model. IAENG Int. J. Comput. Sci. 2007, 34, 239–244. [Google Scholar]
- Song, W.; Wang, Y.; Huang, D.; Tjondronegoro, D. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In Proceedings of the Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Paulo Drews, J.R.; Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission Estimation in Underwater Single Images. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013. [Google Scholar]
- Peng, Y.T.; Cosman, P.C. Underwater Image Restoration Based on Image Blurriness and Light Absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
Database | Tentative Matches | Inlier Matches | Accuracy Rate |
---|---|---|---|
Original images | 210 | 94 | 44.76% |
ICM | 187 | 103 | 55.08% |
ULAP | 191 | 103 | 53.93% |
UDCP | 151 | 71 | 47.02% |
IBLA | 166 | 89 | 53.61% |
Our method | 171 | 101 | 59.06% |
Image | SIFT | APAP | SPHP | AANAP | Ours |
---|---|---|---|---|---|
1 | 1.2994 | 1.3745 | 1.2997 | 1.3953 | 1.4524 |
2 | 0.5841 | 0.6366 | 0.6616 | 0.6695 | 0.6342 |
3 | 1.8733 | 1.9963 | 1.9578 | 1.7377 | 1.9047 |
4 | 1.6443 | 1.7072 | 1.6050 | 1.7192 | 1.7440 |
5 | 1.4720 | 1.5522 | 1.4220 | 1.5256 | 1.6588 |
6 | 1.7069 | 1.7134 | 1.6298 | 1.6833 | 1.7364 |
7 | 1.6783 | 1.6375 | 1.5809 | 1.6719 | 1.6966 |
8 | 2.0174 | 2.0437 | 1.8865 | 1.9139 | 2.0564 |
9 | 1.7277 | 1.7150 | 1.7910 | 1.5551 | 1.7855 |
10 | 1.5662 | 1.5659 | 1.4754 | 1.6446 | 1.7473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zheng, R.; Zhang, W.; Shao, J.; Miao, J. An Improved SIFT Underwater Image Stitching Method. Appl. Sci. 2023, 13, 12251. https://doi.org/10.3390/app132212251
Zhang H, Zheng R, Zhang W, Shao J, Miao J. An Improved SIFT Underwater Image Stitching Method. Applied Sciences. 2023; 13(22):12251. https://doi.org/10.3390/app132212251
Chicago/Turabian StyleZhang, Haosu, Ruohan Zheng, Wenrui Zhang, Jinxin Shao, and Jianming Miao. 2023. "An Improved SIFT Underwater Image Stitching Method" Applied Sciences 13, no. 22: 12251. https://doi.org/10.3390/app132212251
APA StyleZhang, H., Zheng, R., Zhang, W., Shao, J., & Miao, J. (2023). An Improved SIFT Underwater Image Stitching Method. Applied Sciences, 13(22), 12251. https://doi.org/10.3390/app132212251