Numerical Simulation of Co-Barrier Efficiency of Air Curtains in Mine Refuge Chambers
Abstract
:1. Introduction
2. Model Development
2.1. Description of Air Curtain System Model
2.2. Airflow Analysis at the Transition Room Entrance
2.3. Mesh Dividing
2.4. Boundary Conditions
2.5. Solver Setup and the Governing Equation
2.6. Validation of Computational Models
2.7. Evaluation Metrics
3. Simulation Results
3.1. Effects of Installation Position and Jet Velocity
3.1.1. Installed the Air Curtain on the Left Side
3.1.2. Installed the Air Curtain on the Two Sides
3.1.3. Installed the Air Curtain on the Top Side
3.2. Effect of Structural Parameters
3.3. Effect of Jet Angles
4. Discussion
5. Conclusions
- Increasing the jet velocity of the air curtain does not always increase the barrier effect of the air curtain; increasing the jet angle of the air curtain, the barrier effect of the air curtain first increases and then decreases;
- A 6 mm hole diameter air curtain with a 15 mm hole spacing was installed on the top side of the refuge door, with a jet velocity of 22 m/s and a jet angle of 10°, giving the best CO barrier;
- The correlation equation of predicted air curtain hole diameter and hole distance with air curtain efficiency is proposed to provide guidance for the structural design of air curtains in other applications.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tripathy, D.P.; Ala, C.K. Identification of safety hazards in Indian underground coal mines. J. Sustain. Min. 2018, 17, 175–183. [Google Scholar] [CrossRef]
- Pandey, J.; Kumar, D.; Panigrahi, D.C.; Singh, V.K. Temporal transition analysis of coal mine fire of Jharia coalfield, India, using Landsat satellite imageries. Environ. Earth Sci. 2017, 76, 439. [Google Scholar] [CrossRef]
- Meng, L.; Jiang, Y.; Zhao, Y.; Shan, R.; Song, Y. Probing into Design of Refuge Chamber System In Coal Mine. Procedia Eng. 2011, 26, 2334–2341. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, Z.; Liu, H.; Zhai, X.; Li, R.; Song, P.; Jia, M. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob. J. Clean. Prod. 2020, 273, 122925. [Google Scholar] [CrossRef]
- Charles, D.L.; Inoka, E.P. Evaluation of criteria for the detection of fires in underground conveyor belt haulage ways. Fire Saf. J. 2012, 51, 110–119.7. [Google Scholar]
- Wu, B.; Lei, B.; Zhou, C.; Zhao, Z. Experimental Study of Phase Change Material’s Application in Refuge Chamber of Coal Mine. Procedia Eng. 2012, 45, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhou, L.; Smith, A.C. Modeling carbon monoxide spread in underground mine fires. Appl. Therm. Eng. 2016, 100, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Foster, A.M.; Swain, M.J.; Barrett, R.; James, S.J. Experimental verification of analytical and CFD predictions of infiltration through cold store entrances. Int. J. Refrig. 2003, 26, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Halim, A.E.; Brune, J.F. Do Refuge Chambers Represent a Good Strategy to Manage Emergencies in Underground Coal Mines? Min. Metall. Explor. 2019, 36, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Li, X.; Yan, W.; Fang, Z. Experimental investigation and numerical simulation of small-volume transverse-flow air curtain performances. Powder Technol. 2019, 352, 262–272. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Zhu, J.; Wang, L.; Zhang, M.; Xu, X.; Fang, Z.; Zhuo, Y.; Zhao, X.; Li, Z.; et al. Air curtain dust-collecting technology: Investigation of industrial application in tobacco factory of the air curtain dust-collecting system. Process. Saf. Environ. 2021, 149, 676–683. [Google Scholar] [CrossRef]
- Wang, H.; Nie, W.; Cheng, W.; Liu, Q.; Jin, H. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face. Adv. Powder Technol. 2018, 29, 230–244. [Google Scholar] [CrossRef]
- Gao, D.; Li, T.; Mei, X.; Chen, Z.; You, S.; Wang, Z.; Wang, K.; Lin, P. Effectiveness of Smoke Confinement of Air Curtain in Tunnel Fire. Fire Technol. 2020, 56, 2283–2314. [Google Scholar] [CrossRef]
- Goubran, S.; Qi, D.; Saleh, W.F.; Wang, L.L.; Zmeureanu, R. Experimental study on the flow characteristics of air curtains at building entrances. Build. Environ. 2016, 105, 225–235. [Google Scholar] [CrossRef]
- Jiang, H.B.; Zhao, Y.P.; Cheng, Z.Q. Discuss on the Air Curtain Dehumidification Technology Program of Underground Engineering. Appl. Mech. Mater. 2012, 209–211, 1566–1570. [Google Scholar] [CrossRef]
- Viegas, J.C.; Cruz, H. Air Curtains Combined with Smoke Exhaust for Smoke Control in Case of Fire: Full-Size Experiments. Fire Technol. 2019, 55, 211–232. [Google Scholar] [CrossRef]
- Vasanth, S.; Tauseef, S.M.; Abbasi, T.; Abbasi, S.A. CFD simulation of pool fires situated at differing elevation. Process. Saf. Environ. 2015, 94, 89–95. [Google Scholar] [CrossRef]
- Jeong, C.H.; Ko, M.K.; Lee, M.; Lee, S.H. Numerical Simulation of Propagation Characteristics of Hazardous Noxious Substances Spilled from Transport Ships. Appl. Sci. 2018, 8, 2409. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Novella, R.; Gomez-Soriano, J.; Martinez-Hernandiz, P. Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Appl. Sci. 2018, 8, 1707. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, G.; Węgrzyński, W. Air curtain as a barrier for smoke in case of fire: Numerical modelling. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 145–153. [Google Scholar] [CrossRef]
- Hu, L.H.; Zhou, J.W.; Huo, R.; Peng, W.; Wang, H.B. Confinement of fire-induced smoke and carbon monoxide transportation by air curtain in channels. J. Hazard. Mater. 2008, 156, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Gui, C.; Geng, F.; Tang, J.; Niu, H.; Zhou, F.; Liu, C.; Hu, S.; Teng, H. Gas–solid two-phase flow in an underground mine with an optimized air-curtain system: A numerical study. Process. Saf. Environ. 2020, 140, 137–150. [Google Scholar] [CrossRef]
- Park, D.Y.; Chang, S. Numerical investigation of thermal comfort and transport of expiratory contaminants in a ventilated office with an air curtain system. Indoor. Built Environ. 2018, 28, 401–421. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jin, L.; Ou, S.; Li, Y. Experimental air curtain solution for refuge alternatives in underground mines. Tunn. Undergr. Sp. Technol. 2017, 68, 74–81. [Google Scholar] [CrossRef]
- Luo, N.; Li, A.; Gao, R.; Tian, Z.; Zhang, W.; Mei, S.; Feng, L.; Ma, P. An experiment and simulation of smoke confinement and exhaust efficiency utilizing a modified Opposite Double-Jet Air Curtain. Saf. Sci. 2013, 55, 17–25. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Heidarinejad, G.; Pasdarshahri, H. The effect of vertical and horizontal air curtain on smoke and heat control in the multi-storey building. J. Build. Eng. 2021, 40, 102347. [Google Scholar] [CrossRef]
- Yu, L.; Liu, F.; Beji, T.; Weng, M.; Merci, B. Experimental study of the effectiveness of air curtains of variable width and injection angle to block fire-induced smoke in a tunnel configuration. Int. J. Therm. Sci. 2018, 134, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, Z.; Li, X.; Linqi, H.; Niu, G. Numerical study of the effect of air curtains on smoke blocking and leakage heat flux in tunnel fires. Case Stud. Therm. Eng. 2022, 35, 102164. [Google Scholar] [CrossRef]
- Razeghi, S.M.J.; Safarzadeh, M.; Pasdarshahri, H. Evaluation of air curtain and emergency exhaust system for smoke confinement of an enclosure. J. Build. Eng. 2021, 33, 101650. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Z.; Li, Z.; Wang, X.; Han, X.; Jiang, J. Study on the Effect of the Jet Speed of Air Curtain on Smoke Control in Tunnel. Procedia Eng. 2018, 211, 1026–1033. [Google Scholar] [CrossRef]
- Meisburger, E.P.; Iryanto, D.; Quinn, D. Design and Construction of High Capacity Fixed Refuge Chambers at PT Freeport Indonesia’s Underground Operations. In Proceedings of the 11th International Mine Ventilation Congress; Springer: Singapore, 2019. [Google Scholar]
- Jin, L.Z.; Gao, N.; Wang, L. Research and test on the air curtain system of refuge haven of underground mine. J. Saf. Sci. Technol. 2011, 12, 5–10. (In Chinese) [Google Scholar]
- Xiao, Z.; Zhang, W. A study of air curtain velocity and carbon monoxide concentration in refuge chambers. Technol. Innov. Product. 2017, 284, 65–67. (In Chinese) [Google Scholar]
- Zhang, Z.; Yuan, Y.; Wang, K.; Gao, X.; Cao, X. Experimental investigation on Influencing Factors of air curtain systems barrier efficiency for mine refuge chamber. Process Saf. Environ. 2016, 102, 534–546. [Google Scholar] [CrossRef]
- Miao, L.G.; Niu, Y.Y.; Zhang, K. Study on System Design of Coal Mine Underground Permanent Refuge Chamber. Appl. Mech. Mater. 2013, 333–335, 2278–2281. [Google Scholar] [CrossRef]
- Yang, X.D.; Jin, L.Z. Design of Underground Coal Mine Refuge Chamber. Appl. Mech. Mater. 2012, 170–173, 1608–1611. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Chen, X.J.; Li, Z.G.; Deng, L. Design and Analysis of the Six Systems of Refuge Chamber in Coal Mine. Adv. Mater. Res. 2012, 619, 315–320. [Google Scholar] [CrossRef]
- Gonçalves, J.C.; Costa, J.J.; Lopes, A.M.G. Parametric study on the performance of an air curtain based on CFD simulations—New proposal for automatic operation. J. Wind Eng. Ind. Aerod. 2019, 193, 103951. [Google Scholar] [CrossRef]
- Giráldez, H.; Pérez Segarra, C.D.; Oliet, C.; Oliva, A. Heat and moisture insulation by means of air curtains: Application to refrigerated chambers. Int. J. Refrig. 2016, 68, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.C.; Costa, J.J.; Figueiredo, A.R.; Lopes, A.M.G. Study of the aerodynamic sealing of a cold store—Experimental and numerical approaches. Energy Build. 2012, 55, 779–789. [Google Scholar] [CrossRef]
- Shen, C.; Shao, X.; Li, X. Potential of an air curtain system orientated to create non-uniform indoor thermal environment and save energy. Indoor Built Environ. 2017, 26, 152–165. [Google Scholar] [CrossRef]
- Chang, D.G.; Du, M.M.; Gao, X.J. Test Research for Thermal Protective Properties of Mobile Refuge Chamber. Key Eng. Mater. 2013, 561, 635–639. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, G.; Wang, D. Numerical Study on Thermal Environment in Mine Gob Under Coal Oxidation Condition. Ecol. Chem. Eng. 2013, 20, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Page, N.G.; Watkins, T.R.; Caudill, S.D.; Cripps, D.R.; Godsey, J.F.; Maggard, C.J.; Moore, A.D.; Morley, T.A.; Phillipson, S.E.; Sherer, H.E.; et al. Report of Investigation Fatal Underground Mine Explosion, April 5, 2010, Upper Big Branch Mine-South, Performance Coal Company, Montcoal, Raleigh County, West Virginia; Report No. 46-08436; Mine Safety and Health Administration: Arlington, VA, USA, 2011; 965p. [Google Scholar]
- Foster, A.M.; Swain, M.J.; Barrett, R.; Agaro, P.D.; Ketteringham, L.P.; James, S.J. Three-dimensional effects of an air curtain used to restrict cold room infiltration. Appl. Math. Model. 2007, 31, 1109–1123. [Google Scholar] [CrossRef]
- Yin, H.; Li, A. Study of attached air curtain ventilation within a full-scale enclosure: Comparison of four turbulence models. Indoor Built Environ. 2016, 25, 962–975. [Google Scholar] [CrossRef]
- Aksoy, M.H.; Yagmur, S.; Dogan, S. CFD Modelling of Industrial Air Curtains with Heating Unit. EPJ Web Conf. 2019, 213, 2001. [Google Scholar] [CrossRef]
Condition | Installation Location | Airflow Velocity (m/s) | Hole Diameter (mm) | Hole Spacing (mm) | Airflow Angle | Efficiency at 5 min |
---|---|---|---|---|---|---|
1 | Left side | 6 | 6 | 15 | 0° | 24.0% |
2 | Left side | 10 | 6 | 15 | 0° | 40.3% |
3 | Left side | 14 | 6 | 15 | 0° | 53.2% |
4 | Left side | 18 | 6 | 15 | 0° | 62.4% |
5 | Left side | 22 | 6 | 15 | 0° | 60.9% |
6 | Two sides | 6 | 6 | 15 | 0° | 23.6% |
7 | Two sides | 10 | 6 | 15 | 0° | 41.0% |
8 | Two sides | 14 | 6 | 15 | 0° | 57.7% |
9 | Two sides | 18 | 6 | 15 | 0° | 58.2% |
10 | Two sides | 22 | 6 | 15 | 0° | 58.6% |
11 | Top side | 6 | 6 | 15 | 0° | 10.5% |
12 | Top side | 10 | 6 | 15 | 0° | 24.7% |
13 | Top side | 14 | 6 | 15 | 0° | 40.7% |
14 | Top side | 18 | 6 | 15 | 0° | 52.5% |
15 | Top side | 22 | 6 | 15 | 0° | 66.8% |
16 | Top side | 24 | 6 | 15 | 0° | 63.4% |
17 | Top side | 22 | 4 | 10 | 0° | 46.9% |
18 | Top side | 22 | 4 | 15 | 0° | 41.6% |
19 | Top side | 22 | 4 | 20 | 0° | 32.1% |
20 | Top side | 22 | 4 | 25 | 0° | 24.7% |
21 | Top side | 22 | 4 | 30 | 0° | 21.7% |
22 | Top side | 22 | 5 | 10 | 0° | 67.7% |
23 | Top side | 22 | 5 | 15 | 0° | 53.7% |
24 | Top side | 22 | 5 | 20 | 0° | 46.3% |
25 | Top side | 22 | 5 | 25 | 0° | 38.4% |
26 | Top side | 22 | 5 | 30 | 0° | 31.3% |
27 | Top side | 22 | 6 | 10 | 0° | 64.6% |
28 | Top side | 22 | 6 | 20 | 0° | 58.6% |
29 | Top side | 22 | 6 | 25 | 0° | 51.4% |
30 | Top side | 22 | 6 | 30 | 0° | 44.3% |
31 | Top side | 22 | 6 | 15 | 10° | 68.1% |
32 | Top side | 22 | 6 | 15 | 20° | 64.2% |
33 | Top side | 22 | 6 | 15 | 30° | 63.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Zhang, Z.; Lan, J.; Tian, X.; Ma, H.; Mao, R. Numerical Simulation of Co-Barrier Efficiency of Air Curtains in Mine Refuge Chambers. Appl. Sci. 2023, 13, 993. https://doi.org/10.3390/app13020993
Shen Z, Zhang Z, Lan J, Tian X, Ma H, Mao R. Numerical Simulation of Co-Barrier Efficiency of Air Curtains in Mine Refuge Chambers. Applied Sciences. 2023; 13(2):993. https://doi.org/10.3390/app13020993
Chicago/Turabian StyleShen, Zhenqiang, Zujing Zhang, Jiang Lan, Xusong Tian, Hong Ma, and Ruiyong Mao. 2023. "Numerical Simulation of Co-Barrier Efficiency of Air Curtains in Mine Refuge Chambers" Applied Sciences 13, no. 2: 993. https://doi.org/10.3390/app13020993
APA StyleShen, Z., Zhang, Z., Lan, J., Tian, X., Ma, H., & Mao, R. (2023). Numerical Simulation of Co-Barrier Efficiency of Air Curtains in Mine Refuge Chambers. Applied Sciences, 13(2), 993. https://doi.org/10.3390/app13020993